Modeling and Design of Enhanced Strength and Ductility Through Grain Boundary Engineering--A Study of Boron Carbide Based Superhard Materials

通过晶界工程增强强度和延展性的建模与设计--碳化硼基超硬材料的研究

基本信息

项目摘要

Strength refers to a material's ability to withstand failure or yield, while ductility is its ability to permanently deform without fracture. Many important engineering applications require high strength and yet ductile materials, such as in cutting tools, body armor for soldiers, and manufacturing process. One promising candidate is boron carbide, a so-called superhard ceramic names so because of its strength; however, it has low ductility. In poly-crystalline materials, the strength and ductility are commonly associated with microstructural features at the lower length scales (micrometers and below). There is a significant knowledge gap regarding the impact of microstructure on the strength and ductility of superhard ceramics. This project is directed towards the study of the physical mechanisms that underlie the relationships between microstructure, and strength and ductility of boron carbide based materials using computational modeling and simulations. The project will also establish design principles based on the knowledge gained for the development of new boron carbide based materials with enhanced strength and ductility. The design strategies will be extendable to a variety of other superhard materials, such as borides, carbides, and diamond. The research will be integrated into both undergraduate and graduate education, as well as outreach activities for local high school students. The research project will also target the participation of women and under-represented minority students in science, technology, engineering, and math disciplines. The research objective of this project is to illustrate how microstructure determines the deformation and mechanical processes in boron carbide based materials. The research team will apply a multiscale approach coupling atomistic modeling and the mesoscale phase field method to (1) investigate the impact of grain boundaries on mechanical properties, deformation, and failure mechanisms of boron carbide; and (2) establish the design principles to enhance the strength and ductility of boron carbide through engineering of grain boundary properties with microalloying. The research will make original contributions in elucidating the origins of the strength and ductility of polycrystalline superhard ceramics under realistic conditions. The materials design principles will be applied to inspire experimental synthesis of stronger and tougher boron carbide based materials for commercial applications.
强度是指材料承受失败或产量的能力,而延展性是其永久性变形而无需断裂的能力。许多重要的工程应用需要高强度和延性材料,例如切割工具,士兵的防弹衣和制造过程。一个有前途的候选人是碳化物碳化物,这是一个所谓的超级陶瓷名称,因此其力量。但是,它的延展性较低。在多结晶材料中,强度和延展性通常与较低长度尺度(微米及以下)处的微结构特征有关。关于微观结构对超硬陶瓷的强度和延展性的影响,存在很大的知识差距。该项目针对研究微观结构之间关系的物理机制,并使用计算建模和仿真之间的基于硼碳化物材料的强度和延展性。该项目还将根据获得增强强度和延展性的新型碳化物材料的知识来建立设计原理。设计策略将扩展到各种其他超级材料,例如硼化物,碳化物和钻石。该研究将纳入本科和研究生教育,以及当地高中生的外展活动。该研究项目还将针对妇女和代表性不足的少数民族学生参与科学,技术,工程和数学学科。 该项目的研究目标是说明微观结构如何确定基于硼碳化物的材料的变形和机械过程。研究小组将应用多尺度方法耦合原子建模和中尺度相位场方法来(1)研究晶界对硼碳化物机械性能,变形和故障机制的影响; (2)建立设计原理,以通过微合同的晶界特性工程来增强碳化物碳化物的强度和延展性。这项研究将在阐明在现实条件下阐明多晶超陶瓷的强度和延展性的起源。材料设计原理将用于激发实验性综合用于商业应用的较强,更坚固的碳化物材料。

项目成果

期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced fracture toughness of boron carbide from microalloying and nanotwinning
  • DOI:
    10.1016/j.scriptamat.2018.11.035
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Yidi Shen;Guodong Li;Q. An
  • 通讯作者:
    Yidi Shen;Guodong Li;Q. An
Photomechanical effect leading to extraordinary ductility in covalent semiconductors
  • DOI:
    10.1103/physrevb.100.094110
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Hongwei Wang;Shuangxi Song;Xinshu Zou;Fangxi Wang;Zhifu Zhang;S. Morozov;Xiaodong Wang;K. Reddy;Q. An
  • 通讯作者:
    Hongwei Wang;Shuangxi Song;Xinshu Zou;Fangxi Wang;Zhifu Zhang;S. Morozov;Xiaodong Wang;K. Reddy;Q. An
Electron–Hole Excitation Induced Softening in Boron Carbide-Based Superhard Materials
碳化硼基超硬材料中电子空穴激发引起的软化
  • DOI:
    10.1021/acsami.2c05528
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    He, Yi;Shen, Yidi;Tang, Bin;An, Qi
  • 通讯作者:
    An, Qi
Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide
  • DOI:
    10.1103/physrevlett.121.145504
  • 发表时间:
    2018-10-04
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Guo, Dezhou;Song, Shuangxi;An, Qi
  • 通讯作者:
    An, Qi
Mitigating the formation of amorphous shear band in boron carbide
  • DOI:
    10.1063/5.0044526
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Yidi Shen;Jon Fuller;Q. An
  • 通讯作者:
    Yidi Shen;Jon Fuller;Q. An
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi An其他文献

Multiplied bending ductility and toughness of titanium matrix composites by laminated structure manipulation
通过层状结构操纵使钛基复合材料的弯曲延展性和韧性倍增
  • DOI:
    10.1016/j.matdes.2020.109237
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuai Wang;LuJun Huang;Shan Jiang;Rui Zhang;FengBo Sun;Qi An;Lin Geng
  • 通讯作者:
    Lin Geng
Phytochemical profile of ethanolic extracts of Chimonanthus salicifolius S. Y. Hu. leaves and its antimicrobial and antibiotic-mediating activity
腊梅乙醇提取物的植物化学特征 S. Y. Hu。
  • DOI:
    10.1016/j.indcrop.2018.09.021
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Ning Wang;Hui Chen;Lei Xiong;Xin Liu;Xiang Li;Qi An;Ximei Ye;Wenjun Wang
  • 通讯作者:
    Wenjun Wang
Carbon Flux with DAMPE Using Machine Learning Methods
使用机器学习方法使用 DAMPE 的碳通量
  • DOI:
    10.22323/1.444.0168
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Stolpovskiy;Francesco Alemanno;C. Altomare;Qi An;P. Azzarello;F. Barbato;P. Bernardini;Xiaomei Bi;I. Cagnoli;M. Cai;E. Casilli;E. Catanzani;Jin Chang;Dengyi Chen;Junling Chen;Zhan;Z. Chen;P. Coppin;M. Cui;T. Cui;Yunqiang Cui;I. De Mitri;Francesco de Palma;Adriano Di Giovanni;M. Di Santo;Qi Ding;T. Dong;Z. Dong;G. Donvito;D. Droz;Jingmin Duan;K. Duan;R. Fan;Yizhong Fan;F. Fang;K. Fang;Chang;Lei Feng;M. Fernandez Alonso;J. M. Frieden;Piergiorgio Fusco;Min Gao;F. Gargano;Essna Ghose;Ke Gong;Y. Gong;D. Guo;Jianhua Guo;Shuang Han;Yi;Guangshun Huang;Xiao Yuan Huang;Y. Huang;M. Ionica;Luyang Jiang;Weizhong Jiang;Y. Jiang;J. Kong;A. Kotenko;D. Kyratzis;S. Lei;W. Li;Wen Li;Xiang Li;X. Li;Y. Liang;Chengming Liu;Hao Liu;Jie Liu;S. Liu;Yang Liu;F. Loparco;C. Luo;Miao Ma;P. Ma;Tao Ma;Xiao Ma;G. Marsella;M. N. Mazziotta;D. Mo;X. Niu;Xu Pan;A. Parenti;W. Peng;X. Peng;C. Perrina;E. Putti;Rui Qiao;J. Rao;A. Ruina;Z. Shangguan;Weiming Shen;Z. Shen;Z. Shen;L. Silveri;Jing Song;H. Su;Meng Su;H. Sun;Zhiyu Sun;A. Surdo;X. Teng;A. Tykhonov;J. Wang;L. Wang;Shen Wang;X. Wang;Y. Wang;Ying Wang;Yuanzhu Wang;D. Wei;J. Wei;Yining Wei;Di Wu;Jian Wu;L. Wu;Sha Wu;Xin Wu;Z. Xia;E. Xu;Hailun Xu;Jing Xu;Z. Xu;Zizhong Xu;Zunlei Xu;G. Xue;Hai;P. Yang;Y. Yang;H. Yao;Yu;G. Yuan;Qiang Yuan;C. Yue;J. Zang;Shenmin Zhang;W. Zhang;Yan Zhang;Y. Zhang;Yi Zhang;Y. Zhang;Y. Zhang;Yunlong Zhang;Zhe Zhang;Z. Zhang;Cong;Hong;Xu Zhao;C. Zhou;Yanzi Zhu
  • 通讯作者:
    Yanzi Zhu
Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance
用纳米Ti5Si3构建二维网络微结构,实现超高抗蠕变性能
  • DOI:
    10.1016/j.jmst.2019.04.001
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Yang Jiao;L. J. Huang;Shaolou Wei;Hua-Xin Peng;Qi An;Sida Jiang;L. Geng
  • 通讯作者:
    L. Geng
Analysis of Physiotherapy Effect on Sit-to-Stand Movement Dynamics after Stroke
理疗对中风后坐站运动动力学的影响分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kogami Hiroki;An Qi;Yang Ningjia;Yamakawa Hiroshi;Tamura Yusuke;Yamashita Atsushi;Asama Hajime;Shimoda Shingo;Yamasaki Hiroshi;Itkonen Matti;Shibata-Alnajjar Fady;Hattori Noriaki;Kinomoto Makoto;Takahashi Kouji;Fujii Takanori;Otomune Hironori;Miyai Ichiro;Ruoxi Wang;湖上碩樹;Qi An;Hiroki Kogami;Fady Alnajjar;Hiroshi Yamasaki
  • 通讯作者:
    Hiroshi Yamasaki

Qi An的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qi An', 18)}}的其他基金

Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
  • 批准号:
    2328829
  • 财政年份:
    2023
  • 资助金额:
    $ 47.64万
  • 项目类别:
    Standard Grant

相似国自然基金

有机膦酸-过渡金属配合物/石墨烯的杂化结构设计及其阻燃增强环氧树脂的作用机理研究
  • 批准号:
    52304233
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
增强型负热膨胀材料设计与轻质零热膨胀铝基复合材料的制备及界面结构研究
  • 批准号:
    12374032
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
通往人类智能增强:医疗场景中以人为中心的人智交互设计及其效果研究
  • 批准号:
    72301279
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
等离激元增强的光活性纳米酶的设计合成及其在复杂体系中的传感应用研究
  • 批准号:
    22364011
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
3D打印共聚聚醚醚酮分子结构设计及层间增强机理研究
  • 批准号:
    52303053
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing
开发用于增强骨折愈合的压电髓内钉
  • 批准号:
    10759862
  • 财政年份:
    2023
  • 资助金额:
    $ 47.64万
  • 项目类别:
Enhanced Echinobase: A Community Genomics Research Resource For The Future
增强型 Echinobase:未来的社区基因组学研究资源
  • 批准号:
    10715578
  • 财政年份:
    2023
  • 资助金额:
    $ 47.64万
  • 项目类别:
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
  • 批准号:
    10749330
  • 财政年份:
    2023
  • 资助金额:
    $ 47.64万
  • 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
  • 批准号:
    10610975
  • 财政年份:
    2023
  • 资助金额:
    $ 47.64万
  • 项目类别:
Telehealth-Enhanced Patient-Oriented Recovery Trajectory After Intensive Care
远程医疗增强重症监护后以患者为中心的康复轨迹
  • 批准号:
    10667691
  • 财政年份:
    2023
  • 资助金额:
    $ 47.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了