Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing
开发用于增强骨折愈合的压电髓内钉
基本信息
- 批准号:10759862
- 负责人:
- 金额:$ 27.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsBiomechanicsBone GrowthChronicClinicalComplexCustomDataData CollectionDevelopmentDevicesDiabetes MellitusDiagnosisEarly InterventionElectric StimulationElectrical ResistanceElectrodesEnsureEvaluationExplosionFailureFatigueFemoral FracturesFemurFinite Element AnalysisFractureFracture FixationFrequenciesFundingFutureGenerationsGoalsGrowthHealthHealth PersonnelHealthcare SystemsHumanHuman bodyImpaired healingImplantInfectionInjuryIntramedullary NailingLicensingLower ExtremityMarketingMechanicsMedicalMedical DeviceMethodsMilitary PersonnelModelingMonitorMotionNail plateOperative Surgical ProceduresOrthopedic ProceduresOsteogenesisOutcomeOutcome MeasureOutputPathologicPatient CarePatient Self-ReportPatient-Focused OutcomesPatientsPersonal SatisfactionPersonsPhasePhysiciansPhysiologicalPopulationPostoperative PeriodProductionPropertyQuality of lifeRecording of previous eventsReportingResearchRiskRisk FactorsSafetySecond Look SurgeryShapesSheepSignal TransductionSiteSmall Business Innovation Research GrantSocietiesSpinal FusionSurfaceSurgeonSystemTechnologyTestingTherapeuticTimeTitaniumTobacco useTranslatingValidationWeight-Bearing stateWomanWorkX-Ray Computed Tomographybonebone fracture repairbone healingcare costscombat injurycommercializationcompliance behaviorcostcost effectivedesigndesign,build,testdiabeticearly phase clinical trialexperiencehealingimplantable deviceimplantationimprovedin vivoinjuredlong bonemanufacturabilitymanufacturemechanical loadminiaturizenovelpatient populationphase 2 testingpreventprototyperesponsesoundstandard of caresuccesstechnology platformtobacco userverification and validationwarfighter
项目摘要
PROJECT SUMMARY
The objective of this Phase I SBIR is to develop a modular piezoelectric intramedullary nail for enhance
fracture healing and post-operative data collection. Evoke Medical’s core technology is to create human-
powered implantable devices that utilize piezoelectric materials to generate load-induced power. That power can
then be used for various purposes: electrical stimulation of bone growth and/or load-sensing to track healing
progression. Through former SBIR Phase I and Phase II support, we have successfully developed and
manufactured a fully integrated piezoelectric spinal fusion implant. The embedded piezogenerator and
miniaturized circuitry convert patient motion to mechanically synced electronegative stimulation delivered to the
healing site via external titanium electrodes. Through two ovine studies, it has been proven that these load
induced osteoinductive spinal fusion implants stimulate faster and better spinal fusion without pathologic bone
formation. Utilizing this platform technology, a preliminary design concept for a novel modular piezoelectric
intramedullary (IM) nail has been demonstrated and a mechanically sound method of manufacturing efficient
piezoelectric implants with embedded circuitry was developed. Evoke Medical has formed strategic partnerships
that will allow us to design, build and test piezoelectric IM nail implants that can eventually be manufactured in
volume at a reasonable cost.
Intramedullary nails are the preferred and most widely used treatment for femoral fractures in the US. Despite
reported generally good outcomes, fracture nonunion is a chronic medical condition that creates costly and
severe consequences for patients, physicians, and the medical system at large. In general, 5-15 percent of
fracture fixation patients for all bone fractures in the USA develop some form of compromised union. Some
fracture types and patient populations have a larger number of reported nonunion rates as high as 54 percent,
resulting in over 100,000 fractures progressing to nonunion annually. The rate of healing can be slow in all
patients, especially in tobacco users and patients with diabetes. Tobacco users have been shown to have ≥1.6x
greater risk for nonunion than those who do not use tobacco and people with diabetes have been shown to have
a ≥6x greater risk for malunion. Implantable direct current (DC) electrical stimulation has over 30+ year clinical
history of enhancing bone healing but need for an implanted battery and challenging form factors have limited
widespread use. The premise of the Phase I proposal is that a modular IM nail implant with integrated load
induced DC stimulation will promote a faster and more robust fracture union in comparison to the current
standard of care.
The overall goal of this Phase I is to de-risk the piezoelectric modular IM nail design concept, from both
a worst-case mechanical strength and electrical output perspective. Specifically, we will prove that the
power output from a custom ring piezogenerator design integrated with the other novel IM nail implant
components can produce sufficient electrical stimulation under the physiological loading in expected clinical
settings (low frequency and limited weight bearing). Additionally, we will assess from a mechanical design
standpoint that the assembled implant can withstand worst case biomechanical loading and clinical use loading
scenarios (e.g., bending and impact). The outcome of a successful effort will be a verified IM nail prototype with
integrated piezogenerator that can be carried into a Phase II effort to prove safety and efficacy of the
mechanically synced electrical stimulation in an ovine study.
The results of this work will set the stage for Phase II funding to integrate and miniaturize the circuit and electrode
components into the IM nail design and proceed with the verification and validation testing needed for regulatory
evaluation. As part of the future Phase II work, we will investigate the addition of sensing circuitry to track healing
progression and complete in vivo validation ovine studies to justify moving forward with commercialization.
Following, additional funding will be raised to complete early clinical trials required for expanded regulatory
claims around enhancement of fracture healing and diagnosis of successful outcomes. The target IM nail market
is over $658M with a compound annual growth rate of 4.7%. The proposed device is hypothesized to increase
success of healing and decrease time to heal, as well as give patients and healthcare providers quantitative
outcome measures without expensive CT scans or biased patient self-reporting. This would decrease overall
cost of care and human suffering, as earlier, data driven post-operative decisions could be made, preventing
nonunion and additional revision surgeries.
项目概要
第一阶段 SBIR 的目标是开发一种模块化压电髓内钉,以增强
Evoke Medical 的核心技术是创建人体骨折愈合和术后数据收集。
利用压电材料产生负载感应电力的供电植入式设备。
然后用于各种目的:骨骼生长的电刺激和/或负载感应以跟踪愈合
通过之前的 SBIR 一期和二期支持,我们已经成功开发并
制造了完全集成的压电脊柱融合植入物。
微型电路将患者运动转换为机械同步的负电刺激,传递到
通过外部钛电极的愈合部位通过两项绵羊研究,已经证明这些负荷。
诱导骨诱导脊柱融合植入物刺激更快更好的脊柱融合,无需病理性骨
利用该平台技术,形成了新型模块化压电的初步设计概念。
髓内钉 (IM) 已被证明是一种机械上可靠的高效制造方法
开发了带有嵌入式电路的压电植入物,并与 Evoke Medical 建立了战略合作伙伴关系。
这将使我们能够设计、构建和测试压电 IM 指甲植入物,最终可以在
以合理的成本提供数量。
尽管如此,髓内钉是美国股骨骨折的首选且最广泛使用的治疗方法。
据报告总体结果良好,但骨折不愈合是一种慢性疾病,会造成昂贵的费用和
一般来说,5-15% 会对患者、医生和整个医疗系统造成严重后果。
在美国,所有骨折的骨折固定患者都会出现某种形式的愈合不良。
骨折类型和患者人群较多,报告的骨不连率高达 54%,
每年导致超过 100,000 起骨折进展为骨不连,而且愈合速度可能很慢。
患者,特别是吸烟者和糖尿病患者已被证明≥1.6x。
与不吸烟者和糖尿病患者相比,骨不连的风险更大
植入式直流 (DC) 电刺激的临床经验已超过 30 年,畸形愈合风险增加 6 倍以上。
增强骨愈合的历史,但对植入电池的需求和具有挑战性的外形因素限制了
第一阶段提案的前提是具有集成负载的模块化IM钉植入物。
与电流相比,诱导直流刺激将促进更快、更牢固的骨折愈合
护理标准。
第一阶段的总体目标是消除压电模块化 IM 钉设计概念的风险
具体来说,我们将证明最坏情况下的机械强度和电输出。
与其他新型 IM 指甲植入物集成的定制环形压电发电机设计的功率输出
组件可以在预期的临床生理负荷下产生足够的电刺激
设置(低频和有限承重)此外,我们将从机械设计进行评估。
证明组装的植入物可以承受最坏情况的生物力学载荷和临床使用载荷
成功的结果将是经过验证的 IM 指甲原型。
集成压电发电机,可以进行第二阶段工作,以证明该技术的安全性和有效性
绵羊研究中的机械同步电刺激。
这项工作的结果将为第二阶段资金集成和小型化电路和电极奠定基础
将组件纳入 IM 指甲设计中,并进行监管所需的验证和确认测试
作为未来第二阶段工作的一部分,我们将研究添加传感电路来跟踪愈合情况。
并完成体内验证,推动绵羊进展研究,以证明商业化的合理性。
随后,将筹集额外资金来完成扩大监管所需的早期临床试验
关于增强骨折愈合和诊断成功结果的主张。目标 IM 指甲市场。
超过 6.58 亿美元,复合年增长率为 4.7%。
治愈成功并缩短治愈时间,并为患者和医疗保健提供者提供定量信息
无需昂贵的 CT 扫描或有偏见的患者自我报告即可进行结果测量,这将整体降低。
与之前一样,可以做出数据驱动的术后决策,防止护理成本和人类痛苦
骨不连和额外的翻修手术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ember Krech其他文献
Ember Krech的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
人类早发性脊柱侧凸与动物脊柱侧凸模型有限元生物力学比对
- 批准号:81974353
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
低剂量重金属对两栖动物运动生物力学的毒理效应及作用机理
- 批准号:31970494
- 批准年份:2019
- 资助金额:61 万元
- 项目类别:面上项目
雷奈酸锶防治骨质疏松相关邻近节段椎间盘退变及通过基质代谢与生物力学介导的机制研究
- 批准号:81702180
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
沙样散粒体介质中动物运动的仿生生物力学研究
- 批准号:11772038
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
临床相关的挫伤、剪切伤和牵拉伤胸脊髓损伤大鼠模型的建立及分析研究
- 批准号:81771347
- 批准年份:2017
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 27.55万 - 项目类别:
Highly Elastic Biomaterial Development for Urethral Application
尿道应用的高弹性生物材料开发
- 批准号:
10573094 - 财政年份:2023
- 资助金额:
$ 27.55万 - 项目类别:
Control of epithelial morphology and bioenergetics by Toll receptors during dynamic tissue remodeling
动态组织重塑过程中 Toll 受体对上皮形态和生物能的控制
- 批准号:
10737093 - 财政年份:2023
- 资助金额:
$ 27.55万 - 项目类别:
Chondrofluid for arthroscopic knee cartilage repair
用于关节镜膝关节软骨修复的软骨液
- 批准号:
10761624 - 财政年份:2023
- 资助金额:
$ 27.55万 - 项目类别: