Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing

开发用于增强骨折愈合的压电髓内钉

基本信息

  • 批准号:
    10759862
  • 负责人:
  • 金额:
    $ 27.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-19 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The objective of this Phase I SBIR is to develop a modular piezoelectric intramedullary nail for enhance fracture healing and post-operative data collection. Evoke Medical’s core technology is to create human- powered implantable devices that utilize piezoelectric materials to generate load-induced power. That power can then be used for various purposes: electrical stimulation of bone growth and/or load-sensing to track healing progression. Through former SBIR Phase I and Phase II support, we have successfully developed and manufactured a fully integrated piezoelectric spinal fusion implant. The embedded piezogenerator and miniaturized circuitry convert patient motion to mechanically synced electronegative stimulation delivered to the healing site via external titanium electrodes. Through two ovine studies, it has been proven that these load induced osteoinductive spinal fusion implants stimulate faster and better spinal fusion without pathologic bone formation. Utilizing this platform technology, a preliminary design concept for a novel modular piezoelectric intramedullary (IM) nail has been demonstrated and a mechanically sound method of manufacturing efficient piezoelectric implants with embedded circuitry was developed. Evoke Medical has formed strategic partnerships that will allow us to design, build and test piezoelectric IM nail implants that can eventually be manufactured in volume at a reasonable cost. Intramedullary nails are the preferred and most widely used treatment for femoral fractures in the US. Despite reported generally good outcomes, fracture nonunion is a chronic medical condition that creates costly and severe consequences for patients, physicians, and the medical system at large. In general, 5-15 percent of fracture fixation patients for all bone fractures in the USA develop some form of compromised union. Some fracture types and patient populations have a larger number of reported nonunion rates as high as 54 percent, resulting in over 100,000 fractures progressing to nonunion annually. The rate of healing can be slow in all patients, especially in tobacco users and patients with diabetes. Tobacco users have been shown to have ≥1.6x greater risk for nonunion than those who do not use tobacco and people with diabetes have been shown to have a ≥6x greater risk for malunion. Implantable direct current (DC) electrical stimulation has over 30+ year clinical history of enhancing bone healing but need for an implanted battery and challenging form factors have limited widespread use. The premise of the Phase I proposal is that a modular IM nail implant with integrated load induced DC stimulation will promote a faster and more robust fracture union in comparison to the current standard of care. The overall goal of this Phase I is to de-risk the piezoelectric modular IM nail design concept, from both a worst-case mechanical strength and electrical output perspective. Specifically, we will prove that the power output from a custom ring piezogenerator design integrated with the other novel IM nail implant components can produce sufficient electrical stimulation under the physiological loading in expected clinical settings (low frequency and limited weight bearing). Additionally, we will assess from a mechanical design standpoint that the assembled implant can withstand worst case biomechanical loading and clinical use loading scenarios (e.g., bending and impact). The outcome of a successful effort will be a verified IM nail prototype with integrated piezogenerator that can be carried into a Phase II effort to prove safety and efficacy of the mechanically synced electrical stimulation in an ovine study. The results of this work will set the stage for Phase II funding to integrate and miniaturize the circuit and electrode components into the IM nail design and proceed with the verification and validation testing needed for regulatory evaluation. As part of the future Phase II work, we will investigate the addition of sensing circuitry to track healing progression and complete in vivo validation ovine studies to justify moving forward with commercialization. Following, additional funding will be raised to complete early clinical trials required for expanded regulatory claims around enhancement of fracture healing and diagnosis of successful outcomes. The target IM nail market is over $658M with a compound annual growth rate of 4.7%. The proposed device is hypothesized to increase success of healing and decrease time to heal, as well as give patients and healthcare providers quantitative outcome measures without expensive CT scans or biased patient self-reporting. This would decrease overall cost of care and human suffering, as earlier, data driven post-operative decisions could be made, preventing nonunion and additional revision surgeries.
项目摘要 该阶段I SBIR的目的是开发一个模块化压电内内指甲以增强 断裂愈合和术后数据收集。唤起医学的核心技术是创造人类 利用压电材料来产生负载引起的功率的动力植入设备。能力可以 然后用于各种目的:电刺激骨骼生长和/或负载感应以跟踪愈合 进展。通过以前的SBIR第一阶段和第二阶段的支持,我们已经成功开发了 制造了完全集成的压电脊柱融合植入物。嵌入的压电器和 微型电路将患者运动转换为传递到机械同步的电负性模拟 通过外部钛电极治愈位点。通过两项卵巢研究,已经证明了这些负载 诱导的骨诱导性脊柱融合会刺激更快,更好地脊柱融合而没有病理骨 形成。利用此平台技术,这是一种新型模块化压电的初步设计概念 已经证明了肠内(IM)指甲,并有一种机械合理的制造方法 开发了带有嵌入式电路的压电线。 Evoke Medical建立了战略合作伙伴关系 这将使我们能够设计,建立和测试压电im钉子,有时可以在 数量合理的成本。 髓内指甲是美国股骨骨折的首选和最广泛使用的治疗方法。尽管 报告总体上的结果良好,骨折骨不连是一种慢性医疗状况,可产生昂贵的且 对患者,医生和整个医疗系统的严重后果。通常,5-15% 美国所有骨折的骨折固定患者会形成某种形式的损害联合。一些 骨折类型和患者种群的报告额率较高,高达54%, 每年导致超过100,000个断裂到肉交。康复的速度可能很慢 患者,尤其是烟草使用者和糖尿病患者。烟草用户已被证明≥1.6倍 与不使用烟草和糖尿病患者相比,骨不连的风险更大 恶性肿瘤风险≥6倍。可植入的直流电流(DC)电气模拟超过30年以上的临床 增强骨骼愈合但需要植入电池和挑战形式的历史有限 宽度使用。第一阶段建议的前提是具有集成负载的模块化IM指甲植入物 与电流相比 护理标准。 该阶段I的总体目标是从两者中脱发压电模块化im钉设计概念 最差的机械强度和电输出透视。具体来说,我们将证明 与另一个小说Im Nail植入物集成的定制环压电器设计的功率输出 组件可以在预期的临床中产生足够的电气仿真 设置(低频和有限的体重轴承)。此外,我们将从机械设计中进行评估 组装植入物可以承受最坏情况的生物力学负载和临床使用加载的立场 方案(例如弯曲和影响)。成功努力的结果将是经过验证的Im钉原型 综合的压电器可以将其纳入II期的努力,以证明证明的安全性和效率 在卵巢研究中机械同步电气模拟。 这项工作的结果将为II期资金奠定阶段,以整合和微型电路和电极 组件进入IM指甲设计,并继续进行调节所需的验证和验证测试 评估。作为未来第二阶段工作的一部分,我们将调查添加传感电路以跟踪愈合 进展和完整的体内验证卵巢研究,以证明通过商业化前进的合理性。 随后,将筹集额外的资金,以全面的早期临床试验进行扩展的调节试验 关于骨折愈合的增强和成功结果的诊断的主张。目标是指甲市场 超过6.58亿美元,复合年增长率为4.7%。提出的设备被假设增加 康复的成功和减少治愈的时间,并为患者和医疗保健提供者提供定量 没有昂贵的CT扫描或偏见的患者自我报告的结果措施。这将减少总体上 护理成本和人类苦难,如前所述,可以做出数据驱动的术后决定,以防止 未工会和其他修订手术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ember Krech其他文献

Ember Krech的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

人类早发性脊柱侧凸与动物脊柱侧凸模型有限元生物力学比对
  • 批准号:
    81974353
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
低剂量重金属对两栖动物运动生物力学的毒理效应及作用机理
  • 批准号:
    31970494
  • 批准年份:
    2019
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
雷奈酸锶防治骨质疏松相关邻近节段椎间盘退变及通过基质代谢与生物力学介导的机制研究
  • 批准号:
    81702180
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
临床相关的挫伤、剪切伤和牵拉伤胸脊髓损伤大鼠模型的建立及分析研究
  • 批准号:
    81771347
  • 批准年份:
    2017
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
沙样散粒体介质中动物运动的仿生生物力学研究
  • 批准号:
    11772038
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Role of Fat in Osteoarthritis
脂肪在骨关节炎中的作用
  • 批准号:
    10866687
  • 财政年份:
    2023
  • 资助金额:
    $ 27.55万
  • 项目类别:
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 27.55万
  • 项目类别:
Highly Elastic Biomaterial Development for Urethral Application
尿道应用的高弹性生物材料开发
  • 批准号:
    10573094
  • 财政年份:
    2023
  • 资助金额:
    $ 27.55万
  • 项目类别:
Chondrofluid for arthroscopic knee cartilage repair
用于关节镜膝关节软骨修复的软骨液
  • 批准号:
    10761624
  • 财政年份:
    2023
  • 资助金额:
    $ 27.55万
  • 项目类别:
Control of epithelial morphology and bioenergetics by Toll receptors during dynamic tissue remodeling
动态组织重塑过程中 Toll 受体对上皮形态和生物能的控制
  • 批准号:
    10737093
  • 财政年份:
    2023
  • 资助金额:
    $ 27.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了