Collaborative Research: Learning to Use Essential Tools and Resources for Data Science with a Cloud-Based Virtual Environment

协作研究:学习在基于云的虚拟环境中使用数据科学的基本工具和资源

基本信息

项目摘要

Business, government, and science researchers are producing massive amounts of complex data. The availability of these huge datasets fuels a need for both data-driven analytics and a 21st-century workforce that can use data analytics to answer questions and solve problems. This collaborative project will develop a cloud-based virtual platform to train undergraduate students how to use software tools essential to data science. The platform will make state-of-the-art computing resources, including both powerful data analysis tools and parallel hardware systems, more accessible to students and faculty, even if they are at institutions without locally available high-power computing systems. The project aims to help students develop critical workforce skills in data science. The project will also provide professional development opportunities to help faculty use data-analysis tools in their courses and research.The goal of this project is to develop a cloud-based infrastructure in the form of a virtual science platform with related training modules. First, it will leverage an existing framework for building web applications to provide broad access to open source, high performance computing resources at the collaborating universities and through the NSF Extreme Science and Engineering Discovery Environment. The cloud-based platform will support both training of students and collaboration among students. Second, the project will produce a data science curriculum targeted to undergraduate students. The curriculum will also be suitable for graduate students, post-doctoral researchers, and information technology professionals interested in data science. The project will deliver a full set of interactive documents and video tutorials on using and configuring the platform. The educational activities will use graphical, interactive, simulation-based, and experiential learning components to teach data science concepts and computing skills, accessed through the cloud-based platform. Through the platform, students will have the opportunity to learn how to use powerful data science resources, enabling their potential to transform data-rich computer science and engineering problems into practical solutions. Third, the project will deliver professional development for faculty at multiple institutions, to help them learn how to use data science in their classrooms and their own research. This project addresses national interests by making state-of-the-art computing resources more accessible to students, supporting their development of critical workforce skills.
商业、政府和科学研究人员正在产生大量复杂的数据。这些庞大数据集的可用性激发了对数据驱动分析和能够使用数据分析来回答问题和解决问题的 21 世纪劳动力的需求。该合作项目将开发一个基于云的虚拟平台,以培训本科生如何使用数据科学必需的软件工具。该平台将使学生和教师更容易获得最先进的计算资源,包括强大的数据分析工具和并行硬件系统,即使他们所在的机构没有本地可用的高功率计算系统。 该项目旨在帮助学生培养数据科学方面的关键劳动力技能。该项目还将提供专业发展机会,帮助教师在课程和研究中使用数据分析工具。该项目的目标是以虚拟科学平台和相关培训模块的形式开发基于云的基础设施。首先,它将利用现有的构建 Web 应用程序的框架,通过 NSF 极限科学与工程发现环境,在合作大学提供对开源、高性能计算资源的广泛访问。基于云的平台将支持学生的培训和学生之间的协作。其次,该项目将制作针对本科生的数据科学课程。该课程也适合对数据科学感兴趣的研究生、博士后研究人员和信息技术专业人士。该项目将提供有关使用和配置平台的全套交互式文档和视频教程。教育活动将使用图形、交互式、基于模拟和体验式学习组件来教授数据科学概念和计算技能,并通过基于云的平台访问。通过该平台,学生将有机会学习如何使用强大的数据科学资源,发挥他们的潜力,将数据丰富的计算机科学和工程问题转化为实际的解决方案。第三,该项目将为多个机构的教师提供专业发展,帮助他们学习如何在课堂和自己的研究中使用数据科学。该项目通过使学生更容易获得最先进的计算资源来满足国家利益,支持他们发展关键的劳动力技能。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallel Framework for Data-Intensive Computing with XSEDE
Visualizing and Slicing Topological Surfaces in Four Dimensions
四维拓扑表面的可视化和切片
Performance Analysis of Divide-and-Conquer strategies for Large scale Simulations in R
R 中大规模仿真分而治之策略的性能分析
Parallel R Computing on the Web
Web 上的并行 R 计算
Automatic code parallelization for data-intensive computing in multicore systems
多核系统中数据密集型计算的自动代码并行化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Zhang其他文献

Aligning Product-Service Systems with Market Forces: A Theoretical Framework
使产品服务系统与市场力量保持一致:理论框架
A Simulation Framework for Quantitative Validation of Artefact Correction in Diffusion MRI
扩散 MRI 中伪影校正定量验证的模拟框架
The zinc-finger protein SEA-2 regulates larval developmental timing and adult lifespan in C. elegans
锌指蛋白 SEA-2 调节线虫幼虫发育时间和成虫寿命
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinxin Huang;Hui Zhang;Hong Zhang
  • 通讯作者:
    Hong Zhang
Effects of fructose from apple and honey on serum uric acid in young Chinese: Randomized crossover trials.
苹果和蜂蜜中的果糖对中国年轻人血清尿酸的影响:随机交叉试验。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Yinyin Cheng;Hui Zhang;Yong;Zhe Xue;Meng Yan;Hui Wang;Shuben Sun;Xiaohong Zhang
  • 通讯作者:
    Xiaohong Zhang
Protective effect of isoflurane and sevoflurane on ischemic neurons and expression of Bcl-2 and ICE genes in rat brain.
异氟醚和七氟醚对大鼠脑缺血神经元及Bcl-2和ICE基因表达的保护作用。

Hui Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Zhang', 18)}}的其他基金

ERI: A Novel Solution to Enable High-Voltage DC-Links in Electric Vehicles
ERI:一种在电动汽车中实现高压直流链路的新颖解决方案
  • 批准号:
    2138606
  • 财政年份:
    2022
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
AI-powered next-generation imaging biomarkers for dementia
人工智能驱动的下一代痴呆症成像生物标志物
  • 批准号:
    MR/W004097/1
  • 财政年份:
    2021
  • 资助金额:
    $ 23万
  • 项目类别:
    Research Grant
Conference on Fundamental Physical Processes in Solar-Terrestrial Research and Their Relevance to Planetary Physics; Kona, Hawaii; January 7-13, 2018
日地研究基本物理过程及其与行星物理学的相关性会议;
  • 批准号:
    1753874
  • 财政年份:
    2017
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
CAREER: Visualizing Mathematical Structures in High-Dimensional Space
职业:高维空间中的数学结构可视化
  • 批准号:
    1651581
  • 财政年份:
    2017
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
CAREER: Kinetic Phenomena Upstream from the Earth's Bow Shock and Their Geomagnetic Effects
职业:地球弓形激波上游的动力学现象及其地磁效应
  • 批准号:
    1352669
  • 财政年份:
    2015
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Collaborative Research: GEM--Hot Flow Anomalies at the Earth's Bow Shock and Their Geomagnetic Effects
合作研究:GEM--地球弓形激波处的热流异常及其地磁效应
  • 批准号:
    1303689
  • 财政年份:
    2013
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multi-Spacecraft Investigation of Hot Flow Anomalies
合作研究:热流异常的多航天器调查
  • 批准号:
    0963111
  • 财政年份:
    2010
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Collaborative Research: NeTS-NBD: A Revolutionary 4D Approach to Network-Wide Control and Management
合作研究:NetS-NBD:革命性的 4D 网络范围控制和管理方法
  • 批准号:
    0520187
  • 财政年份:
    2005
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Information Technology Research (ITR): ITR/ANIR 100 MB/SEC for 100 Million Households
信息技术研究 (ITR):ITR/ANIR 100 MB/秒,适用于 1 亿家庭
  • 批准号:
    0331653
  • 财政年份:
    2003
  • 资助金额:
    $ 23万
  • 项目类别:
    Cooperative Agreement
ITR: Collaborative Research: Scalable Services for the Global Network
ITR:协作研究:全球网络的可扩展服务
  • 批准号:
    0085920
  • 财政年份:
    2000
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant

相似国自然基金

利用深度学习方法开发创新高精度城市风速及污染物扩散的预测模型研究
  • 批准号:
    42375193
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
  • 批准号:
    62363022
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于脑电信号多域特征和深度学习的驾驶行为识别研究
  • 批准号:
    62366028
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
沉浸式物理学习环境中力反馈交互及其对学习成效影响的研究
  • 批准号:
    62377004
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于可解释机器学习的科学知识角色转变预测研究
  • 批准号:
    72304108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了