CAREER: Kinetic Phenomena Upstream from the Earth's Bow Shock and Their Geomagnetic Effects
职业:地球弓形激波上游的动力学现象及其地磁效应
基本信息
- 批准号:1352669
- 负责人:
- 金额:$ 65.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is focused on better understanding of the ways in which solar wind energy drives space weather disturbances near Earth. The Earth is protected from the direct impact of the solar wind by its magnetic field that extends out to high altitudes and causes the solar wind to be deflected around it. When the Earth?s magnetic field becomes connected to the Sun's magnetic field through a process called magnetic merging, some of the solar wind energy enters near-Earth space. The interaction between the solar wind and the Earth's magnetosphere accelerates plasma particles to energies high enough to threaten spacecraft electronics and astronaut health, and in addition, creates mega-ampere electric currents in the upper atmosphere that can disrupt power grids on the Earth's surface. To predict space weather and thus provide some warning to implement mediation strategies, it is important to understand the conditions in the solar wind that actually hit the magnetosphere. Complications arise because to get sufficient lead-time for the prediction to be of value, the solar wind must be measured upstream of the Earth. However, this undisturbed solar wind is not what eventually triggers the space storming. Instead the solar wind is modified as it forms a bow shock and a layer of shocked and heated plasma (called the magnetosheath) before arriving at the magnetosphere. As a result, it is important to be able to relate observations of the undisturbed solar wind far upstream of the Earth with the solar wind that actually arrives and then to the space storm that is produced. The results of this study will be used for graduate and undergraduate education purposes, and will be disseminated widely. Taking a longer-range perspective, a better understanding of the solar wind-magnetosphere interaction will likely result in improvements to space weather forecasting of value to society and will be relevant to the study of planetary and astrophysical plasma environments. Related space weather topics will be featured in public outreach activities in various venues. A partnership with the Public Information and Outreach Education Office at the Geophysical Institute will significantly increase the scope of the outreach activities beyond the proposing team alone.Observations indicate that a population of solar wind ions reflects from the bow shock, travels back toward the Sun and interacts non-linearly with the incoming solar wind producing a variety of transient features (i.e., hot flow anomalies, foreshock cavitons, and density holes) upstream of the bow shock. Though these transients have been observed for decades, the underlying physical mechanisms that produce them, how they modify the solar wind-magnetosphere interaction, and the types of signatures that result within near-Earth space are still not understood. Since the interaction of the solar wind with the magnetosphere produces the transients and the transients feed back to modify the solar wind-magnetosphere interaction, these features must be studies as a connected system in order to identify the underlying mechanisms. The present work will use observations to identify the various types of solar wind transients, and the conditions under which they are produced, and then use simulations to identify the underlying physical mechanisms. This holistic approach is expected to produce important advances.
该项目的重点是更好地了解太阳风能驱动地球附近空间天气扰动的方式。地球的磁场延伸到高空,导致太阳风在地球周围偏转,从而保护地球免受太阳风的直接影响。当地球磁场通过磁合并过程与太阳磁场相连时,一些太阳风能就会进入近地空间。 太阳风和地球磁层之间的相互作用将等离子体粒子加速到足以威胁航天器电子设备和宇航员健康的能量,此外,还会在高层大气中产生兆安级电流,从而破坏地球表面的电网。 为了预测太空天气并为实施调解策略提供一些警告,了解实际撞击磁层的太阳风的条件非常重要。 复杂性的出现是因为为了获得足够的提前时间以使预测有价值,必须在地球上游测量太阳风。 然而,这种未受干扰的太阳风并不是最终引发太空风暴的原因。 相反,太阳风在到达磁层之前会发生改变,因为它会形成弓形激波和一层受到冲击和加热的等离子体(称为磁鞘)。 因此,重要的是能够将对地球上游未受干扰的太阳风的观测与实际到达的太阳风以及随后产生的太空风暴联系起来。 这项研究的结果将用于研究生和本科生教育,并将广泛传播。 从更长远的角度来看,更好地了解太阳风-磁层相互作用可能会改善对社会有价值的空间天气预报,并将与行星和天体物理等离子体环境的研究相关。 相关空间天气主题将在各个场馆的公共宣传活动中进行专题介绍。 与地球物理研究所公共信息和外展教育办公室的合作将显着扩大外展活动的范围,而不仅仅是提议团队。观察表明,太阳风离子群从弓形激波反射,返回太阳并与入射的太阳风非线性相互作用,在弓激波上游产生各种瞬态特征(即热流异常、前震空穴和密度空洞)。 尽管这些瞬变现象已经被观测了几十年,但产生它们的潜在物理机制、它们如何改变太阳风-磁层相互作用以及在近地空间内产生的特征类型仍然不清楚。由于太阳风与磁层的相互作用会产生瞬变,并且瞬变反馈会改变太阳风-磁层的相互作用,因此必须将这些特征作为一个连接系统进行研究,以便识别潜在的机制。 目前的工作将利用观测来识别各种类型的太阳风瞬变及其产生的条件,然后利用模拟来确定潜在的物理机制。这种整体方法预计将产生重要进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hui Zhang其他文献
[Identification of marsdeniae tenacissimae caulis and its adulterants by RAPD].
RAPD 技术鉴定马氏藤及其掺伪品[J].
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Hui Zhang;Z. Pei;C. Ni;Tinghu Kang - 通讯作者:
Tinghu Kang
Aligning Product-Service Systems with Market Forces: A Theoretical Framework
使产品服务系统与市场力量保持一致:理论框架
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Xiucheng Fan;Hui Zhang - 通讯作者:
Hui Zhang
Protective effect of isoflurane and sevoflurane on ischemic neurons and expression of Bcl-2 and ICE genes in rat brain.
异氟醚和七氟醚对大鼠脑缺血神经元及Bcl-2和ICE基因表达的保护作用。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Shao;Jinglei Zhai;Hui Zhang;Hong Wan;De - 通讯作者:
De
Absolutely nondestructive discrimination of Huoshan Dendrobium nobile species with miniature near-infrared (NIR) spectrometer engine.
利用微型近红外(NIR)光谱仪引擎对霍山金钗石斛物种进行绝对无损判别。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Tian Hu;Hailong Yang;Qi;Hui Zhang;Lei Nie;Lian Li;Jin;Dongtao Liu;Wei Jiang;Fei Wang;Hengchang Zang - 通讯作者:
Hengchang Zang
Sequencing on an imported case in China of COVID‐19 Delta variant emerging from India in a cargo ship in Zhoushan, China
对中国舟山一艘货船上从印度出现的中国输入性 COVID-19 Delta 变种病例进行测序
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:12.7
- 作者:
Bing;Hui Zhang;Yuchao Wang;A. Tang;Ke;Peng Li;Jiabei Chen;Hongling Wang;Jian - 通讯作者:
Jian
Hui Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hui Zhang', 18)}}的其他基金
ERI: A Novel Solution to Enable High-Voltage DC-Links in Electric Vehicles
ERI:一种在电动汽车中实现高压直流链路的新颖解决方案
- 批准号:
2138606 - 财政年份:2022
- 资助金额:
$ 65.06万 - 项目类别:
Standard Grant
AI-powered next-generation imaging biomarkers for dementia
人工智能驱动的下一代痴呆症成像生物标志物
- 批准号:
MR/W004097/1 - 财政年份:2021
- 资助金额:
$ 65.06万 - 项目类别:
Research Grant
Collaborative Research: Learning to Use Essential Tools and Resources for Data Science with a Cloud-Based Virtual Environment
协作研究:学习在基于云的虚拟环境中使用数据科学的基本工具和资源
- 批准号:
1726532 - 财政年份:2017
- 资助金额:
$ 65.06万 - 项目类别:
Standard Grant
Conference on Fundamental Physical Processes in Solar-Terrestrial Research and Their Relevance to Planetary Physics; Kona, Hawaii; January 7-13, 2018
日地研究基本物理过程及其与行星物理学的相关性会议;
- 批准号:
1753874 - 财政年份:2017
- 资助金额:
$ 65.06万 - 项目类别:
Standard Grant
CAREER: Visualizing Mathematical Structures in High-Dimensional Space
职业:高维空间中的数学结构可视化
- 批准号:
1651581 - 财政年份:2017
- 资助金额:
$ 65.06万 - 项目类别:
Continuing Grant
Collaborative Research: GEM--Hot Flow Anomalies at the Earth's Bow Shock and Their Geomagnetic Effects
合作研究:GEM--地球弓形激波处的热流异常及其地磁效应
- 批准号:
1303689 - 财政年份:2013
- 资助金额:
$ 65.06万 - 项目类别:
Continuing Grant
Collaborative Research: Multi-Spacecraft Investigation of Hot Flow Anomalies
合作研究:热流异常的多航天器调查
- 批准号:
0963111 - 财政年份:2010
- 资助金额:
$ 65.06万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS-NBD: A Revolutionary 4D Approach to Network-Wide Control and Management
合作研究:NetS-NBD:革命性的 4D 网络范围控制和管理方法
- 批准号:
0520187 - 财政年份:2005
- 资助金额:
$ 65.06万 - 项目类别:
Continuing Grant
Information Technology Research (ITR): ITR/ANIR 100 MB/SEC for 100 Million Households
信息技术研究 (ITR):ITR/ANIR 100 MB/秒,适用于 1 亿家庭
- 批准号:
0331653 - 财政年份:2003
- 资助金额:
$ 65.06万 - 项目类别:
Cooperative Agreement
ITR: Collaborative Research: Scalable Services for the Global Network
ITR:协作研究:全球网络的可扩展服务
- 批准号:
0085920 - 财政年份:2000
- 资助金额:
$ 65.06万 - 项目类别:
Continuing Grant
相似国自然基金
强场中近阈电子动力学和相关物理现象的关联性研究
- 批准号:12374241
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
复杂Floquet量子系统中的动力学与拓扑现象研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
用粒子示踪微流变方法研究凝胶化过程动力学非均匀性的临界现象
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
非均匀介质中非局部扩散系统的传播现象与动力学
- 批准号:
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
软物质体系动力学临界现象的理论研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Establishment of a new monitoring method on subsurface hydorological processes by the electro-kinetic phenomena and its development to disaster mitigation
动电现象地下水文过程监测新方法的建立及其减灾发展
- 批准号:
15H02831 - 财政年份:2015
- 资助金额:
$ 65.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum kinetic theory of ultrafast phenomena in diluted magnetic semiconductors
稀磁半导体中超快现象的量子动力学理论
- 批准号:
263274142 - 财政年份:2014
- 资助金额:
$ 65.06万 - 项目类别:
Research Grants
Jamming transitions and kinetic phenomena
干扰转变和动力学现象
- 批准号:
1305199 - 财政年份:2013
- 资助金额:
$ 65.06万 - 项目类别:
Continuing Grant
Modeling Heliophysics and Astrophysics Phenomena with a Multi-Scale Fluid-Kinetic Simulation Suite
使用多尺度流体动力学模拟套件对太阳物理学和天体物理学现象进行建模
- 批准号:
1144120 - 财政年份:2012
- 资助金额:
$ 65.06万 - 项目类别:
Standard Grant
Study on Transport phenomena at supercritical mixure interface by moelcular velocity distribution function and mean field kinetic theory
用分子速度分布函数和平均场动力学理论研究超临界混合物界面的输运现象
- 批准号:
23656122 - 财政年份:2011
- 资助金额:
$ 65.06万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research