EAGER: Social Media Participation as Indicator of Actors, Awareness, Attitudes, and Activities Related to STEM Education

EAGER:社交媒体参与度作为与 STEM 教育相关的参与者、意识、态度和活动的指标

基本信息

  • 批准号:
    1707837
  • 负责人:
  • 金额:
    $ 29.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

A strong and productive STEM workforce is essential for the socio-economic well-being of the nation. Consequently, efforts to improve STEM education are undertaken each year across a range of federal and state agencies and they support thousands of STEM education events, activities, and initiatives. These efforts have been successful to some degree but participation by populations historically underrepresented in STEM continues to lag at a time when STEM workforce requirements are increasing. In order to improve future efforts, it is critical to build a nuanced and empirical understanding of the overall STEM space: What is the nature of issues related to STEM that garner interest? Who shows an interest and participates? What are the outcomes and impact of different STEM related initiatives? This proposed project will use social media data to study these issues and answer such questions. Social media data is an underutilized resource as almost 87% of the American population now participates in some form of social media activity. This project has the potential to improve and increase the impact of STEM education related efforts by illuminating ideas and activities of interest to people, current efforts in place, and what participants share and where. This information can be used for efforts such as broadening participation by better targeting campaigns intended to increase interest in STEM and by connecting individuals and organizations to create more momentum for an idea, event or topic.This study will use Twitter data and will focus on studying: (1) Actors - who participates in STEM education issues? (2) Awareness - what do participants know? (3) Attitudes - what attitude and beliefs do participants hold? (4) Activities - what do the participants do? what activities do they participate in? More specifically, the investigative team will use novel methodology to (a) analyze interaction patterns of the categorized users and create interaction networks by considering nodes as users and edges as the interaction strength; (b) use topic modeling techniques to gain insight about users' awareness of STEM; (c) employ target-specific sentiment mining techniques to gain insight about users' attitudes; (d) use geographic and spatio-temporal analysis, such as Density Based Spatial Clustering of Applications with Noise (DBSCAN), to gain insight about STEM activities. This project has the potential to contribute to our understanding of STEM education from the lens of social media. There is novelty in the approach and the methods of this project that serves to potentially transform how social media in STEM education is utilized.
强大而富有成效的 STEM 劳动力对于国家的社会经济福祉至关重要。因此,每年一系列联邦和州机构都会努力改善 STEM 教育,并支持数以千计的 STEM 教育活动、活动和倡议。这些努力在某种程度上取得了成功,但在 STEM 劳动力需求不断增加的情况下,历史上 STEM 代表性不足的人群的参与仍然滞后。为了改进未来的工作,对整个 STEM 领域建立细致入微的实证理解至关重要:引起人们兴趣的与 STEM 相关的问题的本质是什么?谁表现出兴趣并参与?不同 STEM 相关举措的成果和影响是什么?该拟议项目将使用社交媒体数据来研究这些问题并回答这些问题。社交媒体数据是一种未得到充分利用的资源,因为现在近 87% 的美国人参与某种形式的社交媒体活动。该项目有潜力通过阐明人们感兴趣的想法和活动、当前所做的努力以及参与者分享的内容和地点,来改善和增加 STEM 教育相关工作的影响。这些信息可用于通过更好的针对性活动来扩大参与范围,以提高对 STEM 的兴趣,以及通过联系个人和组织为想法、活动或主题创造更多动力。本研究将使用 Twitter 数据,并将重点研究:(1)参与者——谁参与STEM教育问题? (2) 意识——参与者知道什么? (3) 态度——参与者持有什么态度和信念? (4) 活动——参与者做什么?他们参加什么活动?更具体地说,调查团队将使用新颖的方法来(a)分析分类用户的交互模式,并通过将节点视为用户、将边缘视为交互强度来创建交互网络; (b) 使用主题建模技术来深入了解用户对 STEM 的认识; (c) 采用针对特定目标的情绪挖掘技术来深入了解用户的态度; (d) 使用地理和时空分析,例如基于噪声的应用程序的密度空间聚类 (DBSCAN),来深入了解 STEM 活动。该项目有可能有助于我们从社交媒体的角度理解 STEM 教育。 该项目的方法和方法很新颖,有可能改变 STEM 教育中社交媒体的使用方式。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Use of Twitter across educational settings: a review of the literature
Twitter 在教育环境中的使用:文献综述
Keeping Curriculum Relevant: Identifying Longitudinal Shifts in Computer Science Topics through Analysis of Q&A Communities
保持课程相关性:通过 Q 分析识别计算机科学主题的纵向变化
Engineers' Situated Use of Digital Resources to Augment their Workplace Learning Ecology
工程师利用数字资源来增强工作场所学习生态
ILookLikeAnEngineer: Using Social Media Based Hashtag Activism Campaigns as a Lens to Better Understand Engineering Diversity Issues
ILookLikeAnEngineer:使用基于社交媒体的标签激进主义活动作为更好地理解工程多样性问题的镜头
  • DOI:
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Malik, A;Johri, A;Handa, R;Karbasian, H;Purohit, H
  • 通讯作者:
    Purohit, H
Curating Tweets: A Framework for Using Twitter for Workplace Learning
策划推文:使用 Twitter 进行工作场所学习的框架
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aditya Johri其他文献

Representational literacy and participatory learning in large engineering classes using pen-based computing
使用笔式计算在大型工程课程中进行表征素养和参与式学习
Teaching Multidimensional Ethical Decision-Making Through a Role-Play Case Study
通过角色扮演案例研究教授多维道德决策
A Systematic Review of AI Literacy Conceptualization, Constructs, and Implementation and Assessment Efforts (2019-2023)
人工智能素养概念化、构建、实施和评估工作的系统回顾(2019-2023)
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Omaima Almatrafi;Aditya Johri;Hyuna Lee
  • 通讯作者:
    Hyuna Lee
Learning Analytics in Higher Education
高等教育中的学习分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaime Lester;Carrie Klein;H. Rangwala;Aditya Johri
  • 通讯作者:
    Aditya Johri
Generative Artificial Intelligence in Higher Education: Evidence from an Analysis of Institutional Policies and Guidelines
高等教育中的生成人工智能:来自机构政策和指南分析的证据
  • DOI:
    10.48550/arxiv.2402.01659
  • 发表时间:
    2024-01-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nora McDonald;Aditya Johri;Areej Ali;Aayushi Hingle
  • 通讯作者:
    Aayushi Hingle

Aditya Johri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aditya Johri', 18)}}的其他基金

Education DCL: EAGER: An Embedded Case Study Approach for Broadening Students' Mindset for Ethical and Responsible Cybersecurity
教育 DCL:EAGER:一种嵌入式案例研究方法,用于拓宽学生道德和负责任的网络安全思维
  • 批准号:
    2335636
  • 财政年份:
    2024
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
EAGER: Impact of Generative Artificial Intelligence (GAI) on Engineering Education Practices
EAGER:生成人工智能 (GAI) 对工程教育实践的影响
  • 批准号:
    2319137
  • 财政年份:
    2023
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
Workshop: ProVis-EER: Developing Professional Vision into Empirical Practices within Engineering Education Research (EER) though Digital Apprenticeship
研讨会:ProVis-EER:通过数字学徒制将专业愿景发展为工程教育研究 (EER) 中的实证实践
  • 批准号:
    2112775
  • 财政年份:
    2021
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
Collaborative EAGER: Novel Ethnographic Investigations of Engineering Workplaces to Advance Theory and Research Methods for Preparing the Future Workforce
协作 EAGER:对工程工作场所进行新颖的民族志调查,以推进为未来劳动力做好准备的理论和研究方法
  • 批准号:
    1939105
  • 财政年份:
    2020
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
Workshop: Building an Inclusive Foundation of Engineering Education Research Scholarship for Future Growth
研讨会:为未来发展建立工程教育研究奖学金的包容性基础
  • 批准号:
    1941186
  • 财政年份:
    2020
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
Situated Algorithmic Thinking: Preparing the Future Computing Workforce for Ethical Decision-Making through Interactive Case Studies
情境算法思维:通过交互式案例研究为未来的计算劳动力进行道德决策做好准备
  • 批准号:
    1937950
  • 财政年份:
    2020
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
Deeper Learning of Data Science (DLDS): Studying Real-world Experiences of Engineering Professionals to Prepare the Future Workforce
数据科学深度学习 (DLDS):研究工程专业人员的真实经验,为未来的劳动力做好准备
  • 批准号:
    1712129
  • 财政年份:
    2017
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Technology Adoption during Environmental Jolts: Mobile Phone Use and Digital Services Appropriation during India's Demonetization Crisis
RAPID:合作研究:环境动荡期间的技术采用:印度废钞危机期间的手机使用和数字服务挪用
  • 批准号:
    1733634
  • 财政年份:
    2017
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
Collaborative Research (EAGER): Data Ecosystem for Catalyzing Transformative Research in Engineering Education
协作研究(EAGER):促进工程教育变革性研究的数据生态系统
  • 批准号:
    1306373
  • 财政年份:
    2014
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Deep Insights Anytime, Anywhere (DIA2) - Central Resource for Characterizing the TUES Portfolio through Interactive Knowledge Mining and Visualizations
协作研究:随时随地深入洞察 (DIA2) - 通过交互式知识挖掘和可视化来表征 TUES 产品组合的中心资源
  • 批准号:
    1444277
  • 财政年份:
    2014
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于海量自媒体数据的社会感知计算方法研究
  • 批准号:
    62372187
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社会-技术视角下社交媒体群体极化的智能识别、演化机理与管控策略研究
  • 批准号:
    72271096
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
考虑社交媒体社会学习的供应链运营策略研究
  • 批准号:
    72271050
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
数据与知识增强的社会媒体文本立场分析技术研究
  • 批准号:
    62276059
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
面向社会媒体大数据的热点事件分析与推理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: SaTC: Shifts in Misinformation Topics on Social Media: Manipulators Masquerading as Humans
EAGER:SaTC:社交媒体上错误信息主题的转变:伪装成人类的操纵者
  • 批准号:
    2230083
  • 财政年份:
    2022
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Deplatforming and Online Hate Speech Across the Social Media Ecology
EAGER:DCL:SaTC:实现跨学科合作:社交媒体生态中的去平台化和在线仇恨言论
  • 批准号:
    2210023
  • 财政年份:
    2022
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
EAGER: SaTC: Shifts in Misinformation Topics on Social Media: Manipulators Masquerading as Humans
EAGER:SaTC:社交媒体上错误信息主题的转变:伪装成人类的操纵者
  • 批准号:
    2230083
  • 财政年份:
    2022
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: EIC: Inclusive-ScamBuster: Inclusive Scam Detection Methods for Social Media to Design Assistive Tools for Protecting Individuals with Developmental Disabilities
EAGER:DCL:SaTC:EIC:Inclusive-ScamBuster:社交媒体的包容性诈骗检测方法,用于设计保护发育障碍人士的辅助工具
  • 批准号:
    2210107
  • 财政年份:
    2022
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
EAGER: Understanding and Mitigating Misinformation in Visualizations on Social Media
EAGER:理解和减少社交媒体可视化中的错误信息
  • 批准号:
    2041136
  • 财政年份:
    2021
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了