SusChEM: An integrated framework for process design, control and scheduling [PAROC]
SusChEM:过程设计、控制和调度的集成框架 [PAROC]
基本信息
- 批准号:1705423
- 负责人:
- 金额:$ 29.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project aims for an innovative shift in addressing three common tasks performed by process engineers: design, scheduling, and control of process systems. These tasks are typically performed independently of each other, without taking into consideration the interactions and trade-offs amongst them. The development and use of novel strategies, procedures, and tools for decision making for process system engineering has the potential, as part of smart manufacturing and process improvement efforts, to contribute significantly to a sustainable future. The primary aim of this research project is to provide a useful conceptual framework and software tool for the integration of design, control and scheduling tasks. The framework and software platform is being applied to the optimization of a residential combined cooling, heating and power generation network system. The project findings are being incorporated into graduate courses at Texas A&M University. The developed tool is being deployed as an open access software tool for the benefit of the academic and industrial communities. The integration of process design, control and scheduling remains an open grand challenge in process systems engineering. While significant research efforts have been made in the last twenty years to sequentially integrate design with control, and more recently control with scheduling, a generally accepted methodology to unify the field is still lacking. The multi-scale framework being developed features (1) a high-fidelity dynamic model representation, also involving global sensitivity analysis, parameter estimation and mixed integer dynamic optimization capabilities; (2) a suite/toolbox of model approximation methods; (3) a host of multi-parametric programming solvers for mixed continuous/integer problems; (4) a state-space modeling representation capability for scheduling and control problems; and (5) an advanced toolkit for multi-parametric/explicit Model Predictive Control and moving horizon reactive scheduling problems. The intellectual merit of the activity lies in the integration of the three tasks (design, control and scheduling) within a unified multiscale framework and in the ability to acquire optimal operation policies, optimal model based controllers and optimal designs of process systems through a single optimization formulation. Additionally, there is merit in the capability to close the loop with a cross validation of the outcomes with the original model, ensuring optimal and stable operation.
该研究项目旨在解决流程工程师执行的三项常见任务的创新转变:流程系统的设计、调度和控制,这些任务通常是相互独立执行的,而不考虑它们之间的相互作用和权衡。作为智能制造和流程改进工作的一部分,流程系统工程决策的新颖策略、程序和工具的开发和使用有可能为可持续的未来做出重大贡献。为设计、控制的集成提供有用的概念框架和软件工具该框架和软件平台正在应用于住宅联合制冷、供暖和发电网络系统的优化,该项目的研究结果正在被纳入德克萨斯农工大学的研究生课程中。开放访问软件工具,造福于学术界和工业界。过程设计、控制和调度的集成仍然是过程系统工程中的一个开放的巨大挑战,尽管在过去的二十年中已经做出了大量的研究工作来顺序集成设计。控制,以及最近的调度控制,这是一种普遍接受的方法正在开发的多尺度框架仍然缺乏统一的特征:(1)涉及动态模型表示的高保真度,以及全局敏感性分析、参数估计和混合整数动态优化功能;(2)模型套件/工具箱;近似方法;(3) 一系列用于混合连续/整数问题的多参数规划求解器;(4) 用于调度和控制问题的状态空间建模表示功能;以及 (5) 用于多参数/显式问题的高级工具包;模型预测控制和移动最优水平反应调度问题的智能优点在于在统一的多尺度框架内集成三个任务(设计、控制和调度)以及获取操作策略、基于最优模型的控制器和能力。此外,通过对结果与原始模型进行交叉验证来闭环的能力也具有优点,从而确保最佳和稳定的运行。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The impact of model approximation in multiparametric model predictive control
模型逼近对多参数模型预测控制的影响
- DOI:10.1016/j.cherd.2018.09.034
- 发表时间:2018-11
- 期刊:
- 影响因子:3.9
- 作者:Katz, Justin;Burnak, Baris;Pistikopoulos, Efstratios N.
- 通讯作者:Pistikopoulos, Efstratios N.
Integrated process design, scheduling, and control using multiparametric programming
使用多参数编程集成过程设计、调度和控制
- DOI:10.1016/j.compchemeng.2019.03.004
- 发表时间:2019-06
- 期刊:
- 影响因子:4.3
- 作者:Burnak, Baris;Diangelakis, Nikolaos A.;Katz, Justin;Pistikopoulos, Efstratios N.
- 通讯作者:Pistikopoulos, Efstratios N.
Integrating deep learning models and multiparametric programming
集成深度学习模型和多参数编程
- DOI:10.1016/j.compchemeng.2020.106801
- 发表时间:2020-05-08
- 期刊:
- 影响因子:0
- 作者:J. Katz;Iosif Pappas;Styliani Avraamidou;E. Pistikopoulos
- 通讯作者:E. Pistikopoulos
On multiparametric/explicit NMPC for Quadratically Constrained Problems
关于二次约束问题的多参数/显式 NMPC
- DOI:10.1016/j.ifacol.2018.11.066
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:Diangelakis, Nikolaos A.;Pappas, Iosif S.;Pistikopoulos, Efstratios N.
- 通讯作者:Pistikopoulos, Efstratios N.
Integrated Data-Driven Process Monitoring and Explicit Fault-Tolerant Multiparametric Control
集成数据驱动过程监控和显式容错多参数控制
- DOI:10.1021/acs.iecr.9b04226
- 发表时间:2020-02
- 期刊:
- 影响因子:4.2
- 作者:Onel, Melis;Burnak, Baris;Pistikopoulos, Efstratios N.
- 通讯作者:Pistikopoulos, Efstratios N.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Efstratios Pistikopoulos其他文献
Efstratios Pistikopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Efstratios Pistikopoulos', 18)}}的其他基金
GOALI: Integrated Design and Operability Optimization of Industrial-Scale Modular Intensified Systems
GOALI:工业规模模块化强化系统的集成设计和可操作性优化
- 批准号:
2401564 - 财政年份:2024
- 资助金额:
$ 29.52万 - 项目类别:
Standard Grant
Collaborative Research: RETRO: Toward Safe and Smart Operations via REal-Time Risk-based Optimization
合作研究:RETRO:通过实时基于风险的优化实现安全和智能运营
- 批准号:
2312458 - 财政年份:2023
- 资助金额:
$ 29.52万 - 项目类别:
Standard Grant
Novel Optimization Methods for Design, Synthesis, Supply Chain, and Uncertainty of Hybrid Biomass, Coal, and Natural Gas to Liquids, CBGTL, Processes
用于混合生物质、煤炭和天然气液化、CBGTL、工艺的设计、合成、供应链和不确定性的新颖优化方法
- 批准号:
1548540 - 财政年份:2015
- 资助金额:
$ 29.52万 - 项目类别:
Standard Grant
相似国自然基金
导电金属有机框架@石墨烯复合材料与超表面融合的高效多维太赫兹调控器件研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
联邦框架下融合多模态体感信息的脑瘫儿童病理步态康复监测与评价研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于迭代融合框架的深度嵌入式全色锐化优化模型与高效算法研究
- 批准号:12271083
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
基于多源异构数据融合的钢筋混凝土框架结构模型修正与损伤识别研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于承载和装配融合的非线性框架结构模块化拓扑优化方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346650 - 财政年份:2024
- 资助金额:
$ 29.52万 - 项目类别:
Standard Grant
CAREER: AI-enabled Integrated Nutrient, Streamflow, and Parcel sImulation for Resilient agroEcosystems (INSPIRE): a framework for climate-smart crop production and cleaner water
职业:基于人工智能的弹性农业生态系统综合养分、水流和地块模拟 (INSPIRE):气候智能型作物生产和清洁水的框架
- 批准号:
2338563 - 财政年份:2024
- 资助金额:
$ 29.52万 - 项目类别:
Continuing Grant
NESP MaC Project 4.5– Developing an Integrated Pest Management Framework for Feral Pigs in Coastal Environments 2024-2026 (NAILSMA)
NESP MaC 项目 4.5 — 为 2024-2026 年沿海环境中的野猪制定综合害虫管理框架 (NAILSMA)
- 批准号:
global : ba1e00f0-9953-4c17-b990-ba7aed84ce07 - 财政年份:2024
- 资助金额:
$ 29.52万 - 项目类别:
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346651 - 财政年份:2024
- 资助金额:
$ 29.52万 - 项目类别:
Standard Grant
CAREER: An Integrated Trustworthy AI Research and Education Framework for Modeling Human Behavior in Climate Disasters
职业生涯:用于模拟气候灾害中人类行为的综合可信人工智能研究和教育框架
- 批准号:
2338959 - 财政年份:2024
- 资助金额:
$ 29.52万 - 项目类别:
Standard Grant