CHS: Small: Collaborative Research: Measuring and Promoting the Quality of Online News Discussions

CHS:小型:协作研究:衡量和提高在线新闻讨论的质量

基本信息

项目摘要

This project will amplify the efforts of people to bring out the best in other people in online conversations, and will make it easier for people to find high quality online conversations. There are numerous concerns about the tone and content of online conversations on public affairs at the present time. At its best, everyday online debate can lead people to consider alternative perspectives and even change their minds. This happens in environments where people may disagree, but where they try to inform and convince each other rather than simply yell at each other. The first goal of the research is to create automated classifiers to measure the quality of everyday online political talk. Classifiers will estimate the quality of online conversations about news articles in public venues such as Twitter, Facebook, Reddit, and the comments sections of news pages. A Conversation Finder tool (a website and a browser extension) will use the automated classifiers to recommend, in real time, venues where particular news articles are being discussed and where the quality scores are high. The second goal of the research is to create a Conversation Coach that helps the general public to improve the quality of conversation spaces they participate in, by helping them craft messages that directly contribute to quality and that indirectly inspire others. It will include a Message Assistant that extracts elements from conversations in order to help people craft messages and a Message Impact Assessor that predicts the likely impact of a draft message on the quality metrics for subsequent conversations.Quality of online conversations will be measured in terms of a variety of dimensions that communication scholars have articulated as desirable. Training data for the classifiers will be collected from conversation participants in addition to trained coders, and experiments will be conducted to determine the most effective sequence of requests to make of conversation participants in order to maximize motivation to contribute. Creation of the Conversation Recommender will lead to several intellectual contributions, including: (1) developing computational assists that help human raters achieve high inter-rater reliability; (2) identifying methods to motivate conversation participants to act as raters; (3) architecting neural-network based classifiers that achieve high prediction accuracy when trained using the collected ratings as training data; (4) developing techniques to make the classifiers produce interpretable results (explanations). Creation of the Conversation Coach will lead to two intellectual contributions: (1) identifying parts of conversations that can be automatically extracted and that writers find relevant and useful when composing messages; (2) architecting a predictive model that accurately estimates the impact of messages on subsequent conversation quality.
该项目将扩大人们在在线对话中提出最好的人的努力,并使人们更容易找到高质量的在线对话。 目前,人们对在线对话的语调和内容有很多担忧。最好的是,日常在线辩论可以使人们考虑其他观点,甚至改变主意。这发生在人们可能不同意的环境中,但是他们试图互相告知和说服,而不是简单地互相说服。 该研究的第一个目标是创建自动分类器,以衡量日常在线政治谈话的质量。分类器将估算有关在Twitter,Facebook,Reddit和新闻页面的评论部分等公共场所中有关新闻文章的在线对话的质量。对话查找器工具(网站和浏览器扩展程序)将使用自动分类器,以实时推荐讨论特定新闻文章的场所,质量分数很高。该研究的第二个目标是创建一个对话教练,通过帮助他们制作直接有助于质量并间接启发他人的信息来帮助公众提高参与对话空间的质量。它将包括一条消息助理,该消息助理从对话中提取元素,以帮助人们制作信息和一个消息影响评估者,以预测消息草案对随后对话的质量指标的可能影响。在线对话的质量将根据各种维度来衡量,这些维度可以表明沟通学者表达为可取的。除了训练有素的编码人员之外,还将从对话参与者那里收集分类器的培训数据,并将进行实验,以确定最有效的请求顺序,以使对话参与者最大化贡献的动力。 推荐对话的创建将导致一些智力贡献,包括:(1)开发计算辅助工具,以帮助人类评估者实现高评估者的可靠性; (2)确定激励对话参与者充当评估者的方法; (3)架构基于神经网络的分类器,这些分类器在使用收集的评级作为培训数据进行培训时,可以实现高预测准确性; (4)开发使分类器产生可解释结果的技术(说明)。对话教练的创建将导致两个智力贡献:(1)确定可以自动提取的对话的一部分,并在撰写消息时发现相关和有用; (2)构建一个预测模型,该模型可以准确估算消息对随后的对话质量的影响。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cross-Partisan Discussions on YouTube: Conservatives Talk to Liberals but Liberals Don't Talk to Conservatives
  • DOI:
    10.1609/icwsm.v15i1.18105
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siqi Wu;P. Resnick
  • 通讯作者:
    Siqi Wu;P. Resnick
Political Discussion is Abundant in Non-political Subreddits (and Less Toxic)
  • DOI:
    10.1609/icwsm.v15i1.18081
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashwin Rajadesingan;Ceren Budak;P. Resnick
  • 通讯作者:
    Ashwin Rajadesingan;Ceren Budak;P. Resnick
Better Crowdcoding: Strategies for Promoting Accuracy in Crowdsourced Content Analysis
更好的众包编码:提高众包内容分析准确性的策略
  • DOI:
    10.1080/19312458.2021.1895977
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Budak, Ceren;Garrett, R. Kelly;Sude, Daniel
  • 通讯作者:
    Sude, Daniel
Quick, Community-Specific Learning: How Distinctive Toxicity Norms Are Maintained in Political Subreddits.
快速、针对特定社区的学习:如何在政治 Subreddits 中维护独特的毒性规范。
'Walking Into a Fire Hoping You Don't Catch': Strategies and Designs to Facilitate Cross-Partisan Online Discussions
“走进火堆,希望你不要被抓住”:促进跨党派在线讨论的策略和设计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Resnick其他文献

AppealMod: Inducing Friction to Reduce Moderator Workload of Handling User Appeals
AppealMod:引起摩擦以减少主持人处理用户申诉的工作量
Spot Check Equivalence: an Interpretable Metric for Information Elicitation Mechanisms
抽查等价性:信息获取机制的可解释指标
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengwei Xu;Yichi Zhang;Paul Resnick;Grant Schoenebeck
  • 通讯作者:
    Grant Schoenebeck

Paul Resnick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Resnick', 18)}}的其他基金

NSF Convergence Accelerator Track F: Misinformation Judgments with Public Legitimacy
NSF 融合加速器轨道 F:具有公共合法性的错误信息判断
  • 批准号:
    2137469
  • 财政年份:
    2021
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
I-Corps: Diversity-aware News Recommendation
I-Corps:具有多样性意识的新闻推荐
  • 批准号:
    1265115
  • 财政年份:
    2012
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
Workshop: SoCS Doctoral Consortium and PI Meeting
研讨会:SoCS 博士联盟和 PI 会议
  • 批准号:
    1146664
  • 财政年份:
    2011
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
III: Small: Optimizing News and Opinion Aggregators for Diversity
III:小:优化新闻和意见聚合器以实现多样性
  • 批准号:
    0916099
  • 财政年份:
    2009
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
2009 ACM Recommender Systems Conference Doctoral Symposium
2009 ACM推荐系统大会博士生研讨会
  • 批准号:
    0951619
  • 财政年份:
    2009
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
ITR: Collaborative Research: Designing On-Line Communities to Enhance Participation -- Bridging Theory and Practice
ITR:协作研究:设计在线社区以提高参与度——理论与实践的桥梁
  • 批准号:
    0325837
  • 财政年份:
    2003
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant
Recommender and Reputation Systems: Principles and Practices
推荐系统和声誉系统:原则和实践
  • 批准号:
    0308006
  • 财政年份:
    2003
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
The Design of Reputation Systems
声誉系统的设计
  • 批准号:
    9977999
  • 财政年份:
    1999
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

CHS: Small: Collaborative Research: Validating and Communiciating Model-Based Approaches for Data Visualization Ability Assessment
CHS:小型:协作研究:验证和交流基于模型的数据可视化能力评估方法
  • 批准号:
    2120750
  • 财政年份:
    2020
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Shared Mobility Systems to Address Transportation Barriers of Underserved Urban and Rural Communities
CHS:小型:合作研究:共享出行系统,解决服务不足的城乡社区的交通障碍
  • 批准号:
    1910281
  • 财政年份:
    2020
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Optimizing the Human-Machine System for Citizen Science
CHS:小型:协作研究:优化公民科学的人机系统
  • 批准号:
    2006400
  • 财政年份:
    2020
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research:Dynamic Computer-Aided Machining: Supporting Interactive Workflows for Digital Fabrication and Manufacturing
CHS:小型:协作研究:动态计算机辅助加工:支持数字制造和制造的交互式工作流程
  • 批准号:
    2007045
  • 财政年份:
    2020
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Learning Maker Skills By Building Game Props
CHS:小型:协作研究:通过构建游戏道具来学习创客技能
  • 批准号:
    2008028
  • 财政年份:
    2020
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了