RI: Medium: Collaborative Research: Incorporating Biological-Motivated Circuit Motifs into Large-Scale Deep Neural Network Models of the Brain
RI:中:协作研究:将生物驱动的电路基序纳入大脑的大规模深度神经网络模型
基本信息
- 批准号:1703161
- 负责人:
- 金额:$ 52.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies the effects of incorporating, into deep neural networks for visual processing, several heretofore unincorporated features of biological visual cortical circuits. Deep neural networks are artificial circuits loosely inspired by the brain's cerebral cortex. Their abilities to solve complex problems, such as recognizing objects in visual scenes, have revolutionized artificial intelligence and machine learning in recent years. The hierarchy of layers in a deep network trained for visual object recognition also provides the best existing models of the hierarchy of areas in the visual cortex implicated in object recognition (the "ventral stream"). This project seeks to understand whether and how incorporating additional features of brain circuits may (1) improve machine learning performance, particularly on tasks that are more challenging than those typically studied; and (2) yield improved models of visual cortex. Improving the performance of deep networks would yield great benefits across wide swaths of society and industry that are impacted by advances in artificial intelligence. Improved models of visual cortex will advance understanding of cortical function, which may lead to significant further benefits for understanding normal mental functioning and perception and their potential enhancement, as well as mental illness and perceptual and cognitive deficits. Deep networks currently achieve their success using almost purely feedforward processing. Yet the visual cortical ventral stream that helped inspire deep networks also uses massive recurrent processing within each area as well as feedback connections from higher areas to lower areas and "bypass" connections from lower areas to areas multiple steps higher in the hierarchy. Deep networks also use "neurons" that can either excite or inhibit different neurons that they project to, whereas biological neurons are exclusively excitatory or inhibitory. This project will incorporate feedback and bypass connections into deep networks, as well as local recurrent processing in networks of separate excitatory and inhibitory neurons. Recent work by the investigators has shown how local recurrent processing explains a number of nonlinear visual cortical operations often summarized as "normalization." Simple forms of normalization currently used in deep networks maintain activities in an appropriate dynamic range, but the biological forms of normalization involve interactions between different stimulus features and locations in determining neural responses, which may have important computational roles e.g. in parsing visual scenes. The performance of deep networks incorporating these features will be assayed on a variety of visual tasks and as models of ventral stream neural data and human psychophysical data, and compared to performance of existing deep net models.
该项目研究了将生物视觉皮层回路的几个迄今为止未合并的特征合并到用于视觉处理的深度神经网络中的效果。深层神经网络是松散地受大脑大脑皮层启发的人工电路。近年来,它们解决复杂问题(例如识别视觉场景中的物体)的能力彻底改变了人工智能和机器学习。用于视觉对象识别训练的深层网络中的层次结构还提供了与对象识别相关的视觉皮层区域层次结构的最佳现有模型(“腹侧流”)。该项目旨在了解合并大脑回路的附加功能是否以及如何可以(1)提高机器学习性能,特别是在比通常研究的任务更具挑战性的任务上; (2) 产生改进的视觉皮层模型。提高深度网络的性能将为受人工智能进步影响的广泛社会和行业带来巨大利益。改进的视觉皮层模型将促进对皮层功能的理解,这可能会为理解正常的心理功能和感知及其潜在的增强,以及精神疾病和感知和认知缺陷带来显着的进一步益处。深度网络目前几乎完全使用前馈处理来取得成功。然而,帮助激发深层网络的视觉皮层腹侧流也在每个区域内使用大量的循环处理,以及从较高区域到较低区域的反馈连接,以及“旁路”从较低区域到层次结构中更高级别区域的连接。深层网络还使用可以兴奋或抑制它们投射到的不同神经元的“神经元”,而生物神经元仅具有兴奋性或抑制性。该项目将把反馈和旁路连接纳入深层网络,以及单独的兴奋性和抑制性神经元网络中的局部循环处理。研究人员最近的工作表明,局部循环处理如何解释许多通常被概括为“标准化”的非线性视觉皮层操作。目前深度网络中使用的简单形式的归一化将活动维持在适当的动态范围内,但归一化的生物形式涉及不同刺激特征和位置之间的相互作用以确定神经反应,这可能具有重要的计算作用,例如在解析视觉场景时。结合这些特征的深度网络的性能将在各种视觉任务以及腹侧流神经数据和人类心理物理数据的模型上进行分析,并与现有深度网络模型的性能进行比较。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Task-Driven convolutional recurrent models of the visual system.
视觉系统的任务驱动的卷积循环模型。
- DOI:
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Nayebi, A;Bear, D;Kubilius, J;Kar, K;Ganguli, S;Sussillo, D;DiCarlo, JJ;Yamins, DL.
- 通讯作者:Yamins, DL.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Yamins其他文献
Direct lung delivery of para-aminosalicylic acid by aerosol particles.
通过气溶胶颗粒直接向肺部输送对氨基水杨酸。
- DOI:
10.1016/j.tube.2003.08.016 - 发表时间:
2003 - 期刊:
- 影响因子:3.2
- 作者:
N. Tsapis;D. Bennett;K. O'Driscoll;K. Shea;M. Lipp;K. Fu;R. Clarke;D. Deaver;Daniel Yamins;J. Wright;C. Peloquin;D. Weitz;D. A. Edwards - 通讯作者:
D. A. Edwards
Dynamic Task Assignment in Robot Swarms
机器人群中的动态任务分配
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
James McLurkin;Daniel Yamins - 通讯作者:
Daniel Yamins
Local Aggregation for Unsupervised Learning of Visual Embeddings
用于视觉嵌入无监督学习的局部聚合
- DOI:
10.1109/iccv.2019.00610 - 发表时间:
2019-03-29 - 期刊:
- 影响因子:0
- 作者:
Chengxu Zhuang;Alex Zhai;Daniel Yamins - 通讯作者:
Daniel Yamins
Local Label Propagation for Large-Scale Semi-Supervised Learning
用于大规模半监督学习的局部标签传播
- DOI:
10.1103/physrevb.93.144115 - 发表时间:
2019-05-28 - 期刊:
- 影响因子:0
- 作者:
Chengxu Zhuang;Xuehao Ding;Divyanshu Murli;Daniel Yamins - 通讯作者:
Daniel Yamins
Physion: Evaluating Physical Prediction from Vision in Humans and Machines
Physion:评估人类和机器视觉的物理预测
- DOI:
- 发表时间:
2021-06-15 - 期刊:
- 影响因子:0
- 作者:
Daniel Bear;E. Wang;Damian Mrowca;Felix Binder;Hsiau;R. Pramod;Cameron Holdaway;Sirui Tao;Kevin A. Smith;Li Fei;N. Kanwisher;J. Tenenbaum;Daniel Yamins;Judith E. Fan - 通讯作者:
Judith E. Fan
Daniel Yamins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Yamins', 18)}}的其他基金
Collaborative Research: NCS-FR: Beyond the ventral stream: Reverse engineering the neurocomputational basis of physical scene understanding in the primate brain
合作研究:NCS-FR:超越腹侧流:逆向工程灵长类大脑中物理场景理解的神经计算基础
- 批准号:
2123963 - 财政年份:2021
- 资助金额:
$ 52.48万 - 项目类别:
Continuing Grant
CAREER: Understanding visual learning with self-supervised neural network models
职业:通过自监督神经网络模型理解视觉学习
- 批准号:
1844724 - 财政年份:2019
- 资助金额:
$ 52.48万 - 项目类别:
Continuing Grant
相似国自然基金
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: RI: Medium: RUI: Automated Decision Making for Open Multiagent Systems
协作研究:RI:中:RUI:开放多智能体系统的自动决策
- 批准号:
2312657 - 财政年份:2023
- 资助金额:
$ 52.48万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 52.48万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Multilingual Long-form QA with Retrieval-Augmented Language Models
合作研究:RI:Medium:采用检索增强语言模型的多语言长格式 QA
- 批准号:
2312948 - 财政年份:2023
- 资助金额:
$ 52.48万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312956 - 财政年份:2023
- 资助金额:
$ 52.48万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313136 - 财政年份:2023
- 资助金额:
$ 52.48万 - 项目类别:
Standard Grant