Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality

合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实

基本信息

  • 批准号:
    2312139
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Next-generation (NextG) wireless networks provide users with customized, instant services, especially for bandwidth-hungry and latency-sensitive applications. Despite the significant advantages of NextG wireless networks (e.g., 5G/6G and millimeter-wave / Tera Hertz), realizing them faces several key deployment and evaluation challenges: 1) how to speed up the deployment of novel yet complex NextG network technologies; and 2) how to provide flexible testbed facilities with high availability. In this regard, there is an urgent need for a virtual solution that could create a digital model to replicate as accurately as possible the NextG network ecosystem and help tackle the above obstacles before the full realization of a real system. To this end, this project explores methodologies to run faithful digital network twins that replicate the physical NextG networks, and then to build and optimize the twins over the actual networks while considering communication, computing, and networking resource constraints. The built network twins provide an overarching architecture involving the whole life cycle of physical networks, serving the critical application of innovative technologies such as network planning, construction, optimization, and predictive evaluation, and improving the automation and intelligence level of the wireless networks. This transformative research provides a holistic framework for the implementation and optimization of digital network twins, thus catalyzing the deployment and operation of future network systems with major societal impact.This proposed research lays the foundations of digital network twins by developing a novel framework that merges tools from machine learning, communication theory, and distributed optimization to advance the networking technologies in: 1) novel mapping approaches that integrate data-driven modeling, ray-tracing analysis, wireless channel derivation, and regression-based predictions to map NextG wireless networks into digital network twins and then to evolve the mapped twins adaptively; 2) new digital network twin management and optimization framework that combines graph neural networks, distributed learning, and reinforcement learning, to allow distributed devices in a physical network to first independently determine their mapping methods and resource utilization, and then collaboratively maximize the digital network twin performance over actual network environments; 3) design of the twinning platform and evaluation methodology based on simulation and experiments to demonstrate the fidelity, efficacy, and optimality of the built network twins. The project provides a rich environment and virtualized platform that facilitate educating and training students at multiple levels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代 (NextG) 无线网络为用户提供定制的即时服务,特别是对于带宽需求大和延迟敏感的应用程序。尽管NextG无线网络(例如5G/6G和毫米波/太赫兹)具有显着优势,但实现它们面临着几个关键的部署和评估挑战:1)如何加快新颖但复杂的NextG网络技术的部署; 2)如何提供灵活且高可用性的测试平台设施。在这方面,迫切需要一种虚拟解决方案,能够创建数字模型来尽可能准确地复制NextG网络生态系统,并帮助在完全实现真实系统之前解决上述障碍。为此,该项目探索了运行忠实的数字网络双胞胎的方法,这些网络双胞胎复制了物理 NextG 网络,然后在考虑通信、计算和网络资源限制的同时,在实际网络上构建和优化双胞胎。建成的网络孪生提供了涉及物理网络全生命周期的总体架构,服务于网络规划、建设、优化、预测评估等创新技术的关键应用,提升无线网络的自动化和智能化水平。这项变革性研究为数字网络孪生的实施和优化提供了一个整体框架,从而促进了具有重大社会影响的未来网络系统的部署和运营。这项研究通过开发一种融合工具的新颖框架,为数字网络孪生奠定了基础从机器学习、通信理论和分布式优化出发,推动网络技术的发展:1) 新颖的映射方法,集成了数据驱动建模、光线追踪分析、无线信道推导和基于回归的预测来映射 NextG 无线网络转化为数字网络孪生,然后自适应地演化映射孪生; 2)新的数字网络孪生管理和优化框架,结合图神经网络、分布式学习和强化学习,让物理网络中的分布式设备首先独立确定其映射方法和资源利用率,然后协同最大化数字网络孪生实际网络环境下的性能; 3)基于仿真和实验的孪生平台和评估方法的设计,以证明所构建的网络孪生的保真度、有效性和最优性。该项目提供了丰富的环境和虚拟化平台,有助于对学生进行多层次的教育和培训。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mingzhe Chen其他文献

Ultrathin Two-Dimentional TiS2 Nanosheets for High Capacity and Long-Life Sodium-Ion Batteries
用于高容量和长寿命钠离子电池的超薄二维 TiS2 纳米片
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhe Hu;Zhixin Tai;Qiannan Liu;Shi-Wen Wang;Huile Jin;Shun Wang;Weihong Lai;Mingzhe Chen;Lin Li;Lingna Chen;Zhanliang Tao;Shu-Lei Chou
  • 通讯作者:
    Shu-Lei Chou
Complex Neural Networks for Indoor Positioning with Complex-Valued Channel State Information
用于具有复值信道状态信息的室内定位的复杂神经网络
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanzhi Yu;Mingzhe Chen;Zhaohui Yang;Yuchen Liu
  • 通讯作者:
    Yuchen Liu
Joint LED Selection and Precoding Optimization for Multiple-User Multiple-Cell VLC Systems
多用户多小区 VLC 系统的联合 LED 选择和预编码优化
  • DOI:
    10.1109/jiot.2021.3109135
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Yang Yang;Yujie Yang;Mingzhe Chen;Chunyan Feng;Hailun Xia;Shuguang Cui;H. Vincent Poor
  • 通讯作者:
    H. Vincent Poor
Joint Content Caching, Recommendation, and Transmission Optimization for Next Generation Multiple Access Networks
下一代多址网络的联合内容缓存、推荐和传输优化
Securing Distributed Network Digital Twin Systems Against Model Poisoning Attacks
确保分布式网络数字孪生系统免受模型中毒攻击
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zifan Zhang;Minghong Fang;Mingzhe Chen;Gaolei Li;Xi Lin;Yuchen Liu
  • 通讯作者:
    Yuchen Liu

Mingzhe Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

功能化四面体框架核酸/Ac-PGP复合纳米材料靶向调控NETs治疗牙周炎的研究
  • 批准号:
    82301146
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TREM2通过促进NETs吞噬加剧狼疮性肾炎的免疫机制研究
  • 批准号:
    82300809
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NETs活化TRPV4-RHoA通路介导的肺血管高渗漏在肠I/R模型呼吸机相关性肺损伤的机制研究
  • 批准号:
    82302457
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NETs/EVs/cGAS-STING在S.aureus感染引起的乳腺炎中的作用机制研究
  • 批准号:
    32302945
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343619
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343618
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
  • 批准号:
    2312978
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
  • 批准号:
    2312138
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
  • 批准号:
    2312676
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了