Multimodal Visitor Analytics: Investigating Naturalistic Engagement with Interactive Tabletop Science Exhibits

多模式访客分析:研究交互式桌面科学展览的自然参与

基本信息

  • 批准号:
    1713545
  • 负责人:
  • 金额:
    $ 195.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Engagement is the cornerstone of learning in informal science education. During free-choice learning in museums and science centers, visitor engagement shapes how learners interact with exhibits, navigate through exhibit spaces, and form attitudes, interests, and understanding of science. Recent advances in multimodal learning analytics are creating novel opportunities for expanding the range and richness of measures of visitor engagement in free-choice settings. In particular, multimodal learning analytics offer significant potential for integrating multiple data sources to devise a composite picture of visitors' cognitive, affective, and behavioral engagement. The project will center on providing a rich empirical account of meaningful visitor engagement with interactive tabletop science exhibits among individual visitors and small groups, as well as uncovering broader tidal patterns in visitor engagement that unfold across exhibit spaces. A key objective of the project is creating models and practitioner-focused learning analytic tools that will inform the best practices of exhibit designers and museum educators. This project is funded by the Advancing Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, AISL funds research and innovative approaches and resources for use in a variety of settings.The research team will conduct data-rich investigations of visitors' learning experiences with multimodal learning analytics that fuse the rich multichannel data streams produced by fully-instrumented exhibit spaces with the data-driven modeling functionalities afforded by recent advances in machine learning and educational data mining. The research team will conduct a series of visitor studies of naturalistic engagement in solo, dyad, and group interactions as visitors explore interactive tabletop science exhibits. The studies will utilize eye trackers to capture visitors' moment-to-moment attention, facial expression analysis and quantitative field observations to track visitors' emotional states, trace logs generated by exhibit software, as well as motion-tracking sensors and coded video recordings to capture visitors' behavioral interactions. The studies will also use conversation recordings and pre-post assessment measures to capture visitors' science understanding and inquiry processes. With these multimodal data streams as training data, the research team will use probabilistic and neural machine learning techniques to devise learning analytic models of visitor engagement. The project will be conducted by a partnership between North Carolina State University and the North Carolina Museum of Natural Sciences. The research team will 1) design a data-rich multimodal visitor study methodology, 2) create the Visitor Informatics Platform, a suite of open source software tools for multimodal visitor analytics, and 3) launch the Multimodal Visitor Data Warehouse, a curated visitor experience data archive. Together, the multimodal visitor study methodology, the Visitor Informatics Platform, and the Multimodal Visitor Data Warehouse will enable researchers and practitioners in the informal science education community to utilize multimodal learning analytics in their own informal learning environments. It is anticipated that the project will advance the field of informal STEM learning by extending and enriching measures of meaningful visitor engagement, expanding the evidence base for visitor experience design principles, and providing learning analytic tools to support museum educators. By enhancing understanding of the cognitive, affective, and behavioral dynamics underlying visitor experiences in science museums, informal science educators will be well-positioned to design learning experiences that are more effective and engaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
参与是非正式科学教育学习的基石。在博物馆和科学中心的自由选择学习期间,游客参与塑造了学习者如何与展览互动,浏览展览空间,并形成态度,兴趣和对科学的理解。多模式学习分析的最新进展正在创造新的机会,以扩大自由选择环境中访客参与度的范围和丰富性。尤其是,多模式学习分析为整合多个数据源提供了重要的潜力,以设计访客认知,情感和行为参与的综合图片。该项目将集中在提供有意义的访客参与度与互动式桌面科学展览中的丰富经验描述,并在各个访问者和小组之间展出,并揭示了在展览空间中展开的访客参与中更广泛的潮汐模式。该项目的一个关键目标是创建模型和以从业者为中心的学习分析工具,这些工具将为展览设计师和博物馆教育工作者的最佳实践提供信息。该项目由前进的非正式STEM学习(AISL)计划提供资金。 作为增强非正式环境中学习的整体策略的一部分,AISL资助了在各种环境中使用的研究和创新方法和资源。研究团队将通过融合多模式学习分析的访问者学习经验的数据丰富的研究,这些学习经验融合了由富裕的多渠道数据流提供的富裕的多渠道数据流,这些数据通过全面启动的数据进行了用于数据的空间,该数据通过可负担得出的功能进行了构图,以构建功能范围内的范围内的功能范围内的范围。研究团队将在访问者探索互动式桌面科学展览会时进行一系列关于自然主义参与的游客研究。这些研究将利用眼动追踪器来捕捉访客的瞬间关注,面部表达分析和定量现场观察,以跟踪访客的情绪状态,展览软件产生的痕量日志以及运动跟踪传感器和编码视频记录以捕捉访客的行为互动。这些研究还将使用对话记录和验证前评估措施来捕捉访客的科学理解和询问过程。以这些多模式数据流作为培训数据,研究团队将使用概率和神经机器学习技术来设计访客参与的学习分析模型。该项目将由北卡罗来纳州立大学和北卡罗来纳州自然科学博物馆之间的合作关系进行。研究团队将1)设计一种数据丰富的多模式访问者研究方法,2)创建访客信息平台,用于多模式访问者分析的开源软件工具套件,以及3)启动多模式访问者数据仓库,策划的访问者体验数据档案。多模式访问者研究方法,访问者信息学平台和多模式访问者数据仓库将使非正式科学教育社区的研究人员和从业人员能够在其自己的非正式学习环境中利用多模式学习分析。可以预计,该项目将通过扩展和丰富有意义的访客参与度,扩大访客体验设计原理的证据基础并提供学习分析工具来支持博物馆教育工作者的证据基础,通过扩展有意义的访客参与度,扩大有意义的访客参与度,扩大有意义的访客参与度的衡量标准,来推进非正式的STEM学习领域。通过增强对科学博物馆访客经历的认知,情感和行为动态的理解,非正式的科学教育工作者将非常有用,以设计更有效且引人入胜的学习经验。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子优点和广泛的影响来评估NSF的法定任务,并被视为值得的支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
What's Fair is Fair: Detecting and Mitigating Encoded Bias in Multimodal Models of Museum Visitor Attention
Multimodal Trajectory Analysis of Visitor Engagement with Interactive Science Museum Exhibits
游客与互动科学博物馆展品互动的多模态轨迹分析
  • DOI:
    10.1007/978-3-030-78270-2_27
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emmerson, Andrew;Henderson, Nathan;Min, Wookhee;Rowe, Jonathan;Minogue, James;Lester, James
  • 通讯作者:
    Lester, James
Early Prediction of Visitor Engagement in Science Museums with Multimodal Learning Analytics
Early Prediction of Visitor Engagement in Science Museums with Multimodal Adversarial Domain Adaptation
通过多模态对抗域适应对科学博物馆的游客参与度进行早期预测
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henderson, Nathan;Min, Wookhee;Emerson, Andrew;Rowe, Jonathan;Lee, Seung;Minogue, James;Lester, James
  • 通讯作者:
    Lester, James
Investigating Visitor Engagement in Interactive Science Museum Exhibits with Multimodal Bayesian Hierarchical Models
使用多模态贝叶斯分层模型调查游客对互动科学博物馆展览的参与度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Lester其他文献

AI and the Future of Learning: Expert Panel Report
人工智能与学习的未来:专家小组报告
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Roschelle;James Lester;J. Fusco
  • 通讯作者:
    J. Fusco
The Tactical Uses of Passion: An Essay on Power, Reason, and Reality. By Bailey F.G.. (Ithaca, N.Y.: Cornell University Press, 1983. Pp. 275. $29.50, cloth; $9.95, paper.)
激情的战术运用:关于权力、理性和现实的文章。
  • DOI:
  • 发表时间:
    1983
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Kirchkamp;Rosemarie Nagel;R. Sarin;A. Montuori;J. Rowe;Bradford W. Mott;James Lester;J. Scott Armstrong;Michael J. Spector;G. Burns;F. Cindio;C. Peraboni;Stefano A. Cerri;Michele Bernasconi;M. M. Galizzi;Julien Courtin;C. Gonzalez;Cyril Herry;Joseph Psotka;Sung;Emily S. Cross;Richard Ramsey;Allison C. Waters;D. Tucker;D. Erik Everhart;J. Jozefowiez;R. Chandler;Klaus P. Ebmeier;Mary E. Stewart;Nathalie Bier;Stéphane Adam;T. Meulemans;Raymond Angelo Belliotti;C. Poon;S. Schmid;K. Illeris;Charles Kalish;M. Laakso;Teemu Rajala;E. Kaila;T. Salakoski;E. Brannon
  • 通讯作者:
    E. Brannon
A multi-level growth modeling approach to measuring learner attention with metacognitive pedagogical agents
使用元认知教学代理衡量学习者注意力的多层次增长建模方法
  • DOI:
    10.1007/s11409-023-09336-z
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Megan D. Wiedbusch;James Lester;R. Azevedo
  • 通讯作者:
    R. Azevedo
Affective Dynamics and Cognition During Game-Based Learning
基于游戏的学习过程中的情感动态和认知
  • DOI:
    10.1109/taffc.2022.3210755
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Elizabeth B. Cloude;Daryn A. Dever;Debbie L. Hahs;Andrew Emerson;R. Azevedo;James Lester
  • 通讯作者:
    James Lester
Qualitative aspects of breathlessness in health and disease
健康和疾病中呼吸困难的定性方面
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Jaclyn A. Smith;Paul Albert;Enrica Bertella;James Lester;Sandy Jack;Peter M.A. Calverley
  • 通讯作者:
    Peter M.A. Calverley

James Lester的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Lester', 18)}}的其他基金

ExplainIt: Improving Student Learning with Explanation-based Classroom Response Systems
ExplainIt:通过基于解释的课堂响应系统改善学生的学习
  • 批准号:
    2111473
  • 财政年份:
    2021
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Standard Grant
AI Institute for Engaged Learning
人工智能参与学习研究所
  • 批准号:
    2112635
  • 财政年份:
    2021
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Cooperative Agreement
EAGER: Collaborative Research: Building Capacity for K-12 Artificial Intelligence Education Research
EAGER:协作研究:K-12 人工智能教育研究能力建设
  • 批准号:
    1938778
  • 财政年份:
    2019
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Standard Grant
Collaborative Research: PrimaryAI: Integrating Artificial Intelligence into Upper Elementary Science with Immersive Problem-Based Learning
合作研究:PrimaryAI:通过基于问题的沉浸式学习将人工智能融入高年级基础科学
  • 批准号:
    1934153
  • 财政年份:
    2019
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Standard Grant
Supporting Student Planning with Open Learner Models in Middle Grades Science
通过中年级科学的开放学习者模型支持学生规划
  • 批准号:
    1761178
  • 财政年份:
    2018
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF: Augmented Cognition for Teaching: Transforming Teacher Work with Intelligent Cognitive Assistants
合作研究:FW-HTF:增强教学认知:利用智能认知助手改变教师工作
  • 批准号:
    1840120
  • 财政年份:
    2018
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Standard Grant
Improving Science Problem Solving with Adaptive Game-Based Reflection Tools
使用基于游戏的自适应反思工具提高科学问题的解决能力
  • 批准号:
    1661202
  • 财政年份:
    2017
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Continuing Grant
ENGAGE: A Game-based Curricular Strategy for Infusing Computational Thinking into Middle School Science
ENGAGE:将计算思维融入中学科学的基于游戏的课程策略
  • 批准号:
    1640141
  • 财政年份:
    2016
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Big Data from Small Groups: Learning Analytics and Adaptive Support in Game-based Collaborative Learning
协作研究:来自小组的大数据:基于游戏的协作学习中的学习分析和自适应支持
  • 批准号:
    1561655
  • 财政年份:
    2016
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: PRIME: Engaging STEM Undergraduate Students in Computer Science with Intelligent Tutoring Systems
合作研究:PRIME:利用智能辅导系统让 STEM 本科生学习计算机科学
  • 批准号:
    1626235
  • 财政年份:
    2016
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Standard Grant

相似国自然基金

基于地理位置数据分析的游客流动复杂网络多尺度演化及其组织模式——以长三角地区为例
  • 批准号:
    42101233
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于游客时空行为的目的地交通网络可靠性研究
  • 批准号:
    41771153
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
高原旅游目的地游客食物消费综合效应评价及其可持续模式研究
  • 批准号:
    41701620
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
轨迹驱动的滨海景区自驾游客流时空特征及分流模型研究
  • 批准号:
    41701167
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
空间异质性对内地赴港游客购物行为的影响机理研究
  • 批准号:
    41701166
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Museum Visitor Experience and the Responsible Use of AI to Communicate Colonial Collections
博物馆参观者体验和负责任地使用人工智能来交流殖民地收藏品
  • 批准号:
    AH/Z505547/1
  • 财政年份:
    2024
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Research Grant
Neolithic Narratives: examining storytelling methodologies, tools, and technologies for enriched visitor engagement
新石器时代叙事:研究讲故事的方法、工具和技术,以丰富游客的参与度
  • 批准号:
    2880843
  • 财政年份:
    2023
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Studentship
Transformative visitor experiences in pilgrimage tourism
朝圣旅游中变革性的游客体验
  • 批准号:
    23K17118
  • 财政年份:
    2023
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effects of immersive exhibits on animal behaviour, welfare, and visitor experience.
沉浸式展览对动物行为、福利和游客体验的影响。
  • 批准号:
    2874949
  • 财政年份:
    2023
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Studentship
Developing automated visitor monitoring tools for better management of urban nature
开发自动访客监控工具以更好地管理城市自然
  • 批准号:
    DGECR-2022-00469
  • 财政年份:
    2022
  • 资助金额:
    $ 195.2万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了