Molecular Understanding of Ion Intercalation Processes in Rechargeable Aluminum-Carbon Batteries
可充电铝碳电池中离子嵌入过程的分子理解
基本信息
- 批准号:1706926
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the great challenges facing the Nation is to develop novel technologies that transform how renewable sourced energy can be sustainably and economically stored on a massive scale. Rechargeable batteries, which store energy electrochemically, have revolutionized consumer electronics. For greater scale applications including electric vehicles and grid-scale storage of renewable energy sources, substantial improvements are required for the performance properties of energy density, lifetime, and cost. Aluminum metal is a potentially ideal battery electrode material because it is earth abundant, non-flammable, non-toxic, low cost, and can store more charge per unit volume than other common metals. Recently, research on rechargeable batteries composed of aluminum metal and carbon electrodes has been published. However, mechanistic aspects of how the battery stores charge within the carbon electrodes are poorly understood. This project seeks to elucidate the fundamental processes underpinning how the carbon electrodes store and release ions and energy, particularly at the molecular level. These scientific insights will be used to design and synthesize novel carbon electrodes that will result in rechargeable aluminum-carbon batteries with improved energy storage properties. For educational outreach, high school and undergraduate students will collaborate with university researchers and receive advanced training on electrochemical systems. This research will be disseminated to a broader audience by high school demonstrations and on the City University of New York (CUNY) TV station, which is publically broadcast across New York City. The overarching objectives of this project are to understand ion intercalation processes in rechargeable aluminum-carbon batteries at the molecular level, and to use these insights to design new carbon electrode structures with improved energy storage properties. Aluminum-graphite batteries using ionic liquid electrolytes will first be studied to reveal insights into the chemical and structural changes that occur within the battery electrolyte and electrode materials as a function of state-of-charge and cycle number. The molecular-level environments, ion speciation and dynamics, and structures of intercalated carbon electrodes will be characterized by multi-dimensional nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), electron microscopy, and other techniques. These properties will be correlated with bulk electrochemical properties and device performance, yielding new multi-scale understanding. Alternative non-corrosive electrolyte systems will be investigated, which will enable studies of how mixtures of different ionic and solvent species participate and/or affect the intercalation processes. Lastly, novel carbon electrodes based on graphene and carbon nanotubes will be synthesized and tested in aluminum-carbon batteries. In particular, the role of local carbon structures and the effects of disorder on bulk electrochemical properties will be understood and controlled to yield improved electrode materials. Answers to the fundamental scientific questions posed in this work will enable researchers to better understand whether aluminum-carbon batteries could become practical energy storage systems.
美国面临的巨大挑战之一是开发新技术,改变可再生能源大规模可持续、经济存储的方式。可充电电池以电化学方式储存能量,彻底改变了消费电子产品。对于更大规模的应用,包括电动汽车和可再生能源的电网规模存储,需要对能量密度、寿命和成本等性能特性进行实质性改进。铝金属储量丰富、不易燃、无毒、成本低,并且单位体积比其他常见金属能储存更多的电荷,是一种潜在理想的电池电极材料。最近,由铝金属和碳电极组成的可充电电池的研究已经发表。然而,人们对电池如何在碳电极内存储电荷的机械方面知之甚少。该项目旨在阐明碳电极如何存储和释放离子和能量的基本过程,特别是在分子水平上。这些科学见解将用于设计和合成新型碳电极,从而生产出具有改进能量存储特性的可充电铝碳电池。在教育推广方面,高中生和本科生将与大学研究人员合作,并接受电化学系统的高级培训。这项研究将通过高中示威和纽约市立大学 (CUNY) 电视台向更广泛的受众传播,该电视台在纽约市公开播出。该项目的总体目标是在分子水平上了解可充电铝碳电池中的离子嵌入过程,并利用这些见解来设计具有改进的能量存储特性的新型碳电极结构。首先将研究使用离子液体电解质的铝石墨电池,以揭示电池电解质和电极材料内发生的化学和结构变化作为充电状态和循环次数的函数。分子水平的环境、离子形态和动力学以及插层碳电极的结构将通过多维核磁共振(NMR)光谱、X射线衍射(XRD)、电子显微镜和其他技术来表征。这些特性将与体电化学特性和器件性能相关,从而产生新的多尺度理解。将研究替代的非腐蚀性电解质系统,这将使研究不同离子和溶剂种类的混合物如何参与和/或影响插层过程成为可能。最后,基于石墨烯和碳纳米管的新型碳电极将被合成并在铝碳电池中进行测试。特别是,局部碳结构的作用和无序对整体电化学性能的影响将被理解和控制,以产生改进的电极材料。这项工作中提出的基本科学问题的答案将使研究人员能够更好地了解铝碳电池是否可以成为实用的储能系统。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Graphite Structure and Ion Transport on the Electrochemical Properties of Rechargeable Aluminum–Graphite Batteries
- DOI:10.1021/acsaem.9b01184
- 发表时间:2019-10
- 期刊:
- 影响因子:6.4
- 作者:Jeffrey H. Xu;D. Turney;A. Jadhav;R. Messinger
- 通讯作者:Jeffrey H. Xu;D. Turney;A. Jadhav;R. Messinger
Tunable Pseudocapacitive Intercalation of Chloroaluminate Anions into Graphite Electrodes for Rechargeable Aluminum Batteries
- DOI:10.1149/1945-7111/ac0648
- 发表时间:2021-06
- 期刊:
- 影响因子:3.9
- 作者:Jeffrey H. Xu;T. Schoetz;Joseph R. McManus;V. Subramanian;Peter W. Fields;R. Messinger
- 通讯作者:Jeffrey H. Xu;T. Schoetz;Joseph R. McManus;V. Subramanian;Peter W. Fields;R. Messinger
Molecular-level environments of intercalated chloroaluminate anions in rechargeable aluminum-graphite batteries revealed by solid-state NMR spectroscopy
- DOI:10.1039/d0ta02611e
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Jeffrey H. Xu;A. Jadhav;D. Turney;R. Messinger
- 通讯作者:Jeffrey H. Xu;A. Jadhav;D. Turney;R. Messinger
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Messinger其他文献
Robert Messinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Messinger', 18)}}的其他基金
CAREER: Design and Understanding up from the Atomic Scale of Multivalent Intercalation Electrodes for High-Energy-Density Rechargeable Batteries
职业:从原子尺度设计和理解高能量密度可充电电池的多价插层电极
- 批准号:
1847552 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
阴离子结合催化活性阳离子聚合的催化设计、机理理解和单体拓展研究
- 批准号:22371274
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NH3掺杂LiBH4原位机理解析及作为高性能固态锂离子电解质的探究
- 批准号:51802154
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
高比能锂离子电池多因素耦合老化机理解析与衰退建模研究
- 批准号:51807108
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
纤维素梯度功能膜微结构可控构筑及在新型储能器件中应用基础研究与机理解析
- 批准号:31800496
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
复杂微观结构的AuAg双金属纳米颗粒的形成转化机理及其表面等离子共振性能研究
- 批准号:11404210
- 批准年份:2014
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding GABAA receptor protein folding and misfolding
了解 GABAA 受体蛋白折叠和错误折叠
- 批准号:
10744869 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Understanding Foxp2-Mediated Molecular Signaling in Fear Learning
了解恐惧学习中 Foxp2 介导的分子信号传导
- 批准号:
10662864 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Understanding the Role of GARP Proteins in Rod Outer Segment Disc Formation and Retinal Degeneration
了解 GARP 蛋白在视杆外节盘形成和视网膜变性中的作用
- 批准号:
10748725 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Understanding and leveraging immunometabolism to combat Clostridioides difficile infection
了解并利用免疫代谢来对抗艰难梭菌感染
- 批准号:
10750341 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Understanding how membrane composition directs membrane protein structure and function
了解膜成分如何指导膜蛋白结构和功能
- 批准号:
10630518 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: