Understanding and leveraging immunometabolism to combat Clostridioides difficile infection
了解并利用免疫代谢来对抗艰难梭菌感染
基本信息
- 批准号:10750341
- 负责人:
- 金额:$ 53.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmino AcidsArginineAutoimmunityBacteriaBacterial InfectionsBiologyCell physiologyCellsClostridium difficileDL-alpha-DifluoromethylornithineDataDevelopmentDiseaseElderlyEnzymesEpitheliumFDA approvedFailureFamilyGastrointestinal tract structureGene Expression RegulationGenetic TranscriptionGlycolysisGoalsHealthImmuneImmune responseImmune systemImmunityImmunocompromised HostImmunologyIncidenceInfectionInflammationInnate Immune ResponseIntoxicationIon TransportLymphocyteLymphocyte ActivationLymphocyte BiologyMalignant NeoplasmsMediatingMetabolic PathwayMetabolismMissionModelingMolecularMorbidity - disease rateMucosal Immune ResponsesMucosal ImmunityMucous MembraneMusNatural ImmunityOrnithine DecarboxylaseOutcomeOxidative PhosphorylationPathway interactionsPatientsPharmaceutical PreparationsPolyaminesPrimary InfectionProductionProliferatingProtein AnalysisProtein BiosynthesisPublic HealthPublishingPutrescineRecombinant InterleukinsRecurrenceRecurrent diseaseRelapseResearchRoleSeveritiesSeverity of illnessSpermidineSpermineTestingTissuesToxinTranslationsUnited States National Institutes of HealthVaccinesVirulence FactorsWorkcombatcytokineeffective therapyenzyme biosynthesisevidence basegastrointestinalgastrointestinal infectionhuman diseaseimprovedimproved outcomein vivointerestinterleukin-22interleukin-23mortalitynovelpathogenpathogenic bacteriaphase III trialpreventresponsesecondary infectiontargeted treatmenttranscriptome sequencing
项目摘要
PROJECT SUMMARY
The overall goal of this application is to better understand and harness group 3 innate lymphocyte (ILC3) biology
to enhance mucosal immune responses to Clostridioides difficile infection (CDI). We lack fully effective
treatments for this pathogen and there is critical need to better understand how C. difficile interacts with our
immune system. ILC3s are rare immune cells localized within mucosal tissues that help protect against bacterial
infections, including C. difficile. Upon activation, ILC3s secrete high levels of the cytokine interleukin-22 (IL-22)
which is a critical regulator of tissue responses during inflammation. Our recent published study shows that a
major virulence factor of C. difficile, toxin B (TcdB), directly activates ILC3s. Furthermore, work from others has
shown that administration of recombinant IL-22 provides protection in a mouse CDI model suggesting that
boosting the cytokine over its naturally produced levels during infection could aid CDI patients. Therefore, we
are investigating the molecular pathways in ILC3s important for activation to identify novel pathways to enhance
function. One family of pathways of great interest is cellular metabolism. Our preliminary data show that
polyamines positively regulate TcdB-mediated activation of ILC3s. Polyamine levels are increased in activated
ILC3s and when the key biosynthesis enzyme is inhibited, ILC3s produce less IL-22. Polyamines are important
in transcription and translation, have important roles in activation of other immune cells and have yet to be fully
investigated in ILC3s. The central hypothesis is that polyamine biology is important for ILC3 activation, and
polyamines can be leveraged for improving outcomes to C. difficile infection and/or recurrence. In this proposal
we will examine how a metabolic pathway controls ILC3 activation, which has translatable implications on these
immune cells in C. difficile infection. The central hypothesis will be tested by pursuing two specific aims: 1)
Determine the mechanism(s) of polyamine function in C. difficile-activated ILC3s and 2) Determine how to
leverage polyamine biology in primary and recurrent CDI. Under the first aim, we will undertake targeted and
untargeted approaches to determine the cellular pathway(s) that polyamines target in C. difficile-mediated ILC3
activation. The second aim will test how polyamines can be targeted in vivo to boost the innate immune response
and thereby prevent or reduce CDI severity in primary or recurrent disease. Upon completion of these aims, the
expected outcomes are two-fold as we will (1) gain an understanding of fundamental immunology of how
polyamines regulate ILC3 activation and (2) determine the translatable potential of how polyamines can be
leveraged during CDI to boost immunity. These results will have a positive impact on our understanding of
immune responses to C. difficile as they will provide strong evidence-based rationale for further development of
ILC3 and IL-22 biology targeted therapies for CDI patients.
项目摘要
该应用的总体目标是更好地理解和利用3个先天淋巴细胞(ILC3)生物学
为了增强对梭状芽胞杆菌艰难梭菌感染(CDI)的粘膜免疫反应。我们缺乏完全有效的
对这种病原体的治疗,至关重要的需要更好地了解艰难梭菌如何与我们的相互作用
免疫系统。 ILC3是罕见的免疫细胞,粘液组织中有助于预防细菌
感染,包括艰难梭菌。激活后,ILC3分泌高水平的细胞因子白介素22(IL-22)
这是炎症过程中组织反应的关键调节剂。我们最近发表的研究表明
艰难梭菌毒素B(TCDB)的主要毒力因子直接激活ILC3。此外,其他人的工作
显示重组IL-22的给药在小鼠CDI模型中提供了保护,这表明
在感染期间,在其自然产生的水平上增强细胞因子可以帮助CDI患者。因此,我们
正在研究ILC3中的分子途径对于激活很重要,以鉴定新的途径以增强
功能。一系列引起人们感兴趣的途径是细胞代谢。我们的初步数据表明
多胺正阳性地调节TCDB介导的ILC3的激活。激活的多胺水平增加
当抑制关键的生物合成酶时,ILC3会产生较少的IL-22。多胺很重要
在转录和翻译中,在其他免疫细胞的激活中具有重要作用,并且尚未完全
在ILC3S中进行了研究。中心假设是多胺生物学对于ILC3激活很重要,并且
可以利用多胺来改善艰难梭菌感染和/或复发的结局。在此提案中
我们将研究代谢途径如何控制ILC3激活,这对这些激活具有可翻译的含义
艰难梭菌感染中的免疫细胞。中央假设将通过追求两个具体目标来检验:1)
确定艰难梭菌激活C. c. ilc3s中多胺功能的机制,并确定如何确定如何
在原发性和复发性CDI中利用多胺生物学。在第一个目标下,我们将实现目标,并
确定多胺在艰难梭菌介导的ILC3中靶向的细胞途径的无靶方法方法
激活。第二个目标将测试如何在体内靶向多胺以增强先天免疫反应
从而预防或减少原发性或复发性疾病中的CDI严重程度。完成这些目标后,
预期的结果是两个方面的两个方面,因为(1)了解如何理解如何
多胺调节ILC3激活,(2)确定多胺如何可翻译潜力
在CDI期间利用以提高免疫力。这些结果将对我们对
对艰难梭菌的免疫反应将为进一步发展提供强大的循证理由
ILC3和IL-22生物学针对CDI患者的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lauren A Zenewicz其他文献
Lauren A Zenewicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lauren A Zenewicz', 18)}}的其他基金
Regulation of C. difficile infection by the cytokine interleukin-22 (IL-22)
细胞因子白细胞介素 22 (IL-22) 对艰难梭菌感染的调节
- 批准号:
10554370 - 财政年份:2020
- 资助金额:
$ 53.1万 - 项目类别:
Regulation of C. difficile infection by the cytokine interleukin-22 (IL-22)
细胞因子白细胞介素 22 (IL-22) 对艰难梭菌感染的调节
- 批准号:
10341209 - 财政年份:2020
- 资助金额:
$ 53.1万 - 项目类别:
相似国自然基金
胃肠道微生物宏基因组的氨基酸消旋酶挖掘及分析
- 批准号:32360034
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
甘油制α-氨基酸钌基双金属催化剂的构筑及产物调控策略
- 批准号:22308255
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
射频协同纳他霉素干扰氨基酸转运高效杀灭黑曲霉的分子机制研究
- 批准号:32302279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
αKG-NHFe酶FtmOx1通过氨基酸多重构象变化催化内过氧化反应的机理研究
- 批准号:22307037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
18F-TZA分子探针靶向识别胶质瘤IDH1突变及其与氨基酸转运体的关联研究
- 批准号:82302337
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Shifting paradigms to emerging toxins in freshwater cyanobacterial blooms
淡水蓝藻水华中新出现的毒素的范式转变
- 批准号:
10912318 - 财政年份:2023
- 资助金额:
$ 53.1万 - 项目类别:
Arginyl-tRNA beyond translation: mechanism and regulation of protein arginylation
超越翻译的精氨酰-tRNA:蛋白质精氨酰化的机制和调控
- 批准号:
10711167 - 财政年份:2023
- 资助金额:
$ 53.1万 - 项目类别:
Role of Creatine Metabolism in Necrotizing Enterocolitis
肌酸代谢在坏死性小肠结肠炎中的作用
- 批准号:
10724729 - 财政年份:2023
- 资助金额:
$ 53.1万 - 项目类别:
Pulmonary Vascular Development in Single Ventricle Heart Disease: A Longitudinal Biomarker Approach
单心室心脏病的肺血管发育:纵向生物标志物方法
- 批准号:
10591167 - 财政年份:2023
- 资助金额:
$ 53.1万 - 项目类别: