CAREER: Design and Understanding up from the Atomic Scale of Multivalent Intercalation Electrodes for High-Energy-Density Rechargeable Batteries
职业:从原子尺度设计和理解高能量密度可充电电池的多价插层电极
基本信息
- 批准号:1847552
- 负责人:
- 金额:$ 55.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There is a critical need for improved energy storage technologies for electric vehicles and large-scale integration of renewable electricity grid storage to improve domestic energy security. Currently, state-of-the-art energy storage technologies such as lithium-ion batteries have insufficient energy density and are too costly for broad use in these applications. Battery electrodes based on multivalent ions (e.g., aluminum ions or zinc ions) yield significant enhancements in electric charge storage capacity over monovalent (e.g., lithium-ion) electrodes. When paired with their corresponding metal electrodes, potentially transformative gains in energy density are possible. However, multivalent battery performance to date is lacking, in large part due to limited fundamental understanding and control of the complex electronic, chemical, and structural changes that the electrodes undergo upon continued charge and discharge cycles. Research efforts in this project will investigate the fundamental electrochemical processes that occur during the use of multivalent electrodes, yielding insights into how to design and realize rechargeable batteries with significantly enhanced energy storage properties. Rechargeable aluminum-ion and zinc-ion electrodes will be investigated as both aluminum and zinc metals are earth abundant, low-cost, non-flammable, non-toxic, and exhibit high volumetric charge storage capacity. The project also includes outreach efforts that will advance STEM education at the high school level by directly interacting with high school science teachers at a local high school via a "Battery Bootcamp". Outreach will stress the co-development of hands-on, age appropriate laboratory experiments for the high school students to use to help understand electrochemical engineering concepts. The project also will conduct a NMR School within the City University of New York (CUNY) for graduate students to incorporate this technique and other advanced spectroscopic methods to enrich their own respective research projects.The scientific and technological objectives of this research project are to (i) understand, up from the atomic scale, the processes and properties underpinning electrochemical intercalation of multivalent cations in crystalline transition metal compounds and (ii) to use this understanding to discover and optimize novel intercalation electrodes with significantly enhanced bulk energy storage properties. Aluminum-ion (Al3+) and zinc-ion (Zn2+) intercalation electrodes will be investigated to leverage the favorable electrochemical properties of aluminum and zinc metal while enabling the effects of differing ion valence and charge density to be studied. The electronic and crystalline structures of model transition metal compounds will be systematically varied, enabling investigations of their relationships to electrochemical intercalation phenomena from the molecular to the cell level. Subsequently, knowledge gained from model studies will be used to initiate targeted materials discovery efforts, wherein new electrode compositions and structures will be synthesized and explored for next-generation aluminum-ion and zinc-ion batteries. Novel multi-dimensional solid-state nuclear magnetic resonance (NMR) methods will yield new insights into the atomic-level environments, structures, and dynamics of intercalated cations and electrode frameworks, revealing ion intercalation and charge transfer mechanisms. Overall, this work is expected to establish and validate molecular design principles aimed at realizing multivalent intercalation electrodes with enhanced charge storage capacities, intercalation potentials, and rate properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
迫切需要改进电动汽车储能技术和大规模整合可再生电网存储,以提高国内能源安全。目前,最先进的储能技术(例如锂离子电池)能量密度不足,而且成本过高,不适合在这些应用中广泛使用。基于多价离子(例如铝离子或锌离子)的电池电极比单价(例如锂离子)电极的电荷存储容量显着增强。当与相应的金属电极配对时,能量密度的潜在变革性增益是可能的。然而,迄今为止,多价电池的性能仍存在缺陷,这在很大程度上是由于对电极在连续充电和放电循环中经历的复杂电子、化学和结构变化的基本理解和控制有限。该项目的研究工作将调查使用多价电极期间发生的基本电化学过程,从而深入了解如何设计和实现具有显着增强的能量存储特性的可充电电池。将研究可充电铝离子和锌离子电极,因为铝和锌金属储量丰富、成本低廉、不易燃、无毒,并且具有高体积电荷存储容量。该项目还包括外展工作,通过“电池训练营”与当地高中的高中科学教师直接互动,推进高中水平的 STEM 教育。外展活动将强调共同开发适合高中生年龄的动手实践实验室实验,以帮助他们理解电化学工程概念。该项目还将在纽约市立大学 (CUNY) 内建立一所 NMR 学校,供研究生结合该技术和其他先进的光谱方法来丰富他们各自的研究项目。该研究项目的科学和技术目标是( i)从原子尺度上理解结晶过渡金属化合物中多价阳离子电化学嵌入的过程和特性,以及(ii)利用这种理解来发现和优化具有显着增强的体能量存储特性的新型嵌入电极。将研究铝离子 (Al3+) 和锌离子 (Zn2+) 插层电极,以利用铝和锌金属的有利电化学性能,同时研究不同离子价和电荷密度的影响。模型过渡金属化合物的电子和晶体结构将系统地变化,从而能够从分子到细胞水平研究它们与电化学嵌入现象的关系。随后,从模型研究中获得的知识将用于启动有针对性的材料发现工作,其中将为下一代铝离子和锌离子电池合成和探索新的电极成分和结构。新型多维固态核磁共振(NMR)方法将对插层阳离子和电极框架的原子级环境、结构和动力学产生新的见解,揭示离子插层和电荷转移机制。总体而言,这项工作预计将建立和验证分子设计原则,旨在实现具有增强的电荷存储能力、嵌入电位和倍率特性的多价嵌入电极。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Materials Compatibility in Rechargeable Aluminum Batteries: Chemical and Electrochemical Properties between Vanadium Pentoxide and Chloroaluminate Ionic Liquids
- DOI:10.1021/acs.chemmater.9b01556
- 发表时间:2019-08
- 期刊:
- 影响因子:8.6
- 作者:Xiaoyu Wen;Yuhang Liu;A. Jadhav;Jian Zhang;D. Borchardt;Jiayan Shi;B. Wong;B. Sanyal;R. Messi
- 通讯作者:Xiaoyu Wen;Yuhang Liu;A. Jadhav;Jian Zhang;D. Borchardt;Jiayan Shi;B. Wong;B. Sanyal;R. Messi
Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems
- DOI:10.1016/j.electacta.2022.140072
- 发表时间:2022-03-07
- 期刊:
- 影响因子:6.6
- 作者:Schoetz, T.;Gordon, L. W.;Messinger, R. J.
- 通讯作者:Messinger, R. J.
Soluble Electrolyte-Coordinated Sulfide Species Revealed in Al–S Batteries by Nuclear Magnetic Resonance Spectroscopy
- DOI:10.1021/acs.chemmater.2c00248
- 发表时间:2022-05
- 期刊:
- 影响因子:8.6
- 作者:Rahul Jay;A. Jadhav;Leo W. Gordon;R. Messinger
- 通讯作者:Rahul Jay;A. Jadhav;Leo W. Gordon;R. Messinger
Quantitative Molecular-Level Understanding of Electrochemical Aluminum-Ion Intercalation into a Crystalline Battery Electrode
- DOI:10.1021/acsenergylett.0c01138
- 发表时间:2020-09-11
- 期刊:
- 影响因子:22
- 作者:Jadhav, Ankur L.;Xu, Jeffrey H.;Messinger, Robert J.
- 通讯作者:Messinger, Robert J.
Interplay between coordination, dynamics, and conductivity mechanism in Mg/Al-catenated ionic liquid electrolytes
- DOI:10.1016/j.jpowsour.2022.231084
- 发表时间:2022-03
- 期刊:
- 影响因子:9.2
- 作者:Gioele Pagot;Mounesha G Garaga;A. Jadhav;Lauren F. O'Donnell;K. Vezzù;Boris Itin;R. Messinger;S. Greenbaum;V. Di Noto
- 通讯作者:Gioele Pagot;Mounesha G Garaga;A. Jadhav;Lauren F. O'Donnell;K. Vezzù;Boris Itin;R. Messinger;S. Greenbaum;V. Di Noto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Messinger其他文献
Robert Messinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Messinger', 18)}}的其他基金
Molecular Understanding of Ion Intercalation Processes in Rechargeable Aluminum-Carbon Batteries
可充电铝碳电池中离子嵌入过程的分子理解
- 批准号:
1706926 - 财政年份:2017
- 资助金额:
$ 55.06万 - 项目类别:
Standard Grant
相似国自然基金
阴离子结合催化活性阳离子聚合的催化设计、机理理解和单体拓展研究
- 批准号:22371274
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
交叉口新型混合交通流交互机理解析及协同优化设计研究
- 批准号:52372304
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
二维杂化体系多铁性的理解与设计
- 批准号:12304115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多元特征协同的列车车体能耗机理解析及优化设计研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
漆酶生物催化膜的界面强化设计和反应分离机理解析
- 批准号:21878306
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Understanding and Ensuring Secure-by-design Microarchitecture in Modern Era of Computing
职业:理解并确保现代计算时代的安全设计微架构
- 批准号:
2340777 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Continuing Grant
Understanding Risk Heterogeneity Following Child Maltreatment: An Integrative Data Analysis Approach.
了解虐待儿童后的风险异质性:综合数据分析方法。
- 批准号:
10721233 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Seizure, cognitive change and dementia: Understanding the use and safety of anti-seizure medications
癫痫、认知改变和痴呆:了解抗癫痫药物的使用和安全性
- 批准号:
10740534 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Understanding the Molecular Basis of Translation Inhibition by SARS-CoV-2 NSP14 and its Role in SARS-CoV-2 Immune Evasion
了解 SARS-CoV-2 NSP14 翻译抑制的分子基础及其在 SARS-CoV-2 免疫逃避中的作用
- 批准号:
10427688 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别: