CAREER: Multiscale Simulation of Liquid-Vapor Phase Change Heat Transfer
职业:液-汽相变传热的多尺度模拟
基本信息
- 批准号:1652578
- 负责人:
- 金额:$ 50.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Connecting microscale heat transfer and large-scale flows in boiling and condensation in energy systems40% of US energy consumption is used as heat to boil steam for power production. 72% of this energy invested in steam production is rejected to the environment through gas-to-liquid condensation. Boiling and condensation are therefore critical processes in the energy landscape. Improved understanding of these processes can lead to increased efficiencies in power generation, refrigeration, and freshwater distillation. Boiling and condensation are governed by mechanisms that occur over a wide range of size scales, and the interplay between these scales is not yet well understand. For example, in boiling, vapor bubbles form in minute cavities on heated surfaces, grow and detach into the bulk liquid, and merge to form large gaseous structures. Flow and heat transfer effects at these three scales have been postulated to interact in a complex fashion. In this project, computational methods will be developed to predict interactions between scales in boiling and condensation. Experiments will be performed to assess and refine computational models. Resulting models and gained insights will guide engineering of enhanced energy system equipment to improve heat transfer performance and overall efficiency. In a complementary outreach effort, a new teaching module will be developed and implemented in diverse regional secondary schools, introducing energy issues and computer modeling skills. As part of this project, students will collect measurements of residential appliance energy consumption to be incorporated into a web-tool that provides guidance on appliance efficiency and environmental impacts for the public. Research on transport in energy systems will complement development and implementation of a teaching module and classroom-based research project for secondary school students in diverse regional communities introducing energy issues and computer modeling skills. Secondary school student measurements of residential appliance energy consumption will be incorporated into a public web-tool that provides estimates of efficiency and environmental impacts, and guidance on appliance age and cost tradeoffs. At the university teaching level, a new project-driven Energy Systems course will be developed in which students will develop public tutorial videos on key energy technologies.This project seeks to characterize the coupling between micro-scale heat transfer and large-scale fluid dynamics in flow boiling and dropwise condensation through an experimentally validated multiscale simulation framework. By modeling small, dispersed features in an averaged sense, directly tracking trajectories of intermediate vapor and liquid features, and resolving large structures, this approach will capture interactions between scales, which have been understood independently. For flow boiling, this will be applied to study interactions between large vapor bubble wakes and bubble nucleation and the development of two-phase flow structures. For dropwise condensation, this approach will quantify the effects of transport properties on transient condensation and hydrodynamic contributions to heat transfer. The approach will be validated and complemented with experimental high-speed photography and thermal imaging studies. Simulation software will be released open-source to support research for applications in power generation, absorption cooling, water distillation, and electronics cooling.
在沸腾系统中连接微观传热和能源系统中的凝结40%的能源消耗中的大规模流动被用作热蒸汽以进行动力生产。投资于蒸汽生产的能源中有72%通过气体到液的凝结拒绝了环境。因此,沸腾和凝结是能量景观中的关键过程。对这些过程的了解的提高会导致发电,制冷和淡水蒸馏的效率提高。沸腾和凝结受到在较大尺寸尺度上发生的机制的控制,这些尺度之间的相互作用尚不很好地理解。例如,在沸腾的,在加热表面的微小腔中形成蒸气气泡,生长并脱离到散装液体中,并合并以形成大型气态结构。在这三个量表上的流量和传热效应已被假设以复杂的方式相互作用。在该项目中,将开发计算方法来预测沸腾和凝结中量表之间的相互作用。将进行实验以评估和完善计算模型。产生的模型和获得的见解将指导工程增强的能源系统设备,以提高传热性能和整体效率。在互补的外展工作中,将在各种区域中学中开发和实施一个新的教学模块,从而引入能源问题和计算机建模技能。作为该项目的一部分,学生将收集住宅设备能源消耗的测量,并将其纳入网络工具中,为公众提供有关设备效率和环境影响的指导。能源系统中运输的研究将补充基于教学模块和基于课堂的研究项目的开发和实施,以介绍各种地区社区中的中学生,引入能源问题和计算机建模技能。中学学生对住宅设备能源消耗的测量将纳入公共网络工具中,以估算效率和环境影响,以及对设备年龄和成本权衡的指导。在大学教学级别上,将开发一个新的项目驱动的能源系统课程,其中学生将在其中开发有关关键能源技术的公共教程视频。本项目试图通过实验验证的多台式模拟框架来表征微型热传输与流动沸腾和落下凝结中的大规模流体动力学之间的耦合。通过对平均意义上的小型,分散的特征进行建模,直接跟踪中间蒸气和液体特征的轨迹,并解决大型结构,这种方法将捕获量表之间的相互作用,这些量表已独立理解。对于流量沸腾,这将应用于研究大型气泡唤醒与气泡成核之间的相互作用以及两相流量结构的发展。对于液滴凝结,该方法将量化运输特性对瞬时凝结和流体动力学贡献的影响。该方法将得到验证,并通过实验性高速摄影和热成像研究进行互补。仿真软件将被发布开源,以支持用于发电,吸收冷却,水蒸馏和电子冷却的应用的研究。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental study of interactions between wakes and nucleate boiling in intermittent flow patterns
间歇流型中尾流与核沸腾相互作用的实验研究
- DOI:10.1615/tfec2022.mpp.040970
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, X;Rattner, Alexander S.
- 通讯作者:Rattner, Alexander S.
Rational design process for gas turbine exhaust to supercritical CO2 waste heat recovery heat exchanger using topology optimization
采用拓扑优化的燃气轮机排气至超临界CO2余热回收换热器的合理设计过程
- DOI:10.1016/j.applthermaleng.2023.121670
- 发表时间:2024
- 期刊:
- 影响因子:6.4
- 作者:Adil, Nosherwan;Dryepondt, Sebastian N.;Kulkarni, Anand;Geoghegan, Patrick J.;Zhang, Xiang;Alkandari, Abdulaziz;Rattner, Alexander S.
- 通讯作者:Rattner, Alexander S.
Heat transfer during condensing droplet coalescence
- DOI:10.1016/j.ijheatmasstransfer.2018.07.005
- 发表时间:2018-12
- 期刊:
- 影响因子:5.2
- 作者:S. Adhikari;A. Rattner
- 通讯作者:S. Adhikari;A. Rattner
Hybrid volume of fluid (VOF) and Lagrangian approach for simulating interactions between dispersed bubbles and large interfaces in two-phase flow
混合流体体积 (VOF) 和拉格朗日方法用于模拟两相流中分散气泡与大界面之间的相互作用
- DOI:10.1615/tfec2023.mpp.046636
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang, Xiang;Rattner, Alexander S.
- 通讯作者:Rattner, Alexander S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Rattner其他文献
Alexander Rattner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Rattner', 18)}}的其他基金
Collaborative Research: Computational and Experimental Investigation of High-Flux Heating of Supercritical Fluids in Microscale Geometries
合作研究:微尺度几何结构中超临界流体高通量加热的计算和实验研究
- 批准号:
1604538 - 财政年份:2016
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
相似国自然基金
小角中子散射结合多尺度分子动力学模拟探究固体分散体晶态转化机制
- 批准号:82304413
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
固有无序蛋白性质与功能的多尺度分子动力学模拟
- 批准号:22373011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
城市“土地-人口”的多尺度非均衡时空关联及其耦合演化模拟
- 批准号:42371423
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
高放处置库围岩热水力耦合长期稳定性劣化机理及多尺度数值模拟研究
- 批准号:12372374
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
mRNA递送系统的多尺度分子模拟研究
- 批准号:22373105
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
CAREER: Multiscale Simulation and Machine Learning for Smart Polymer Design
职业:智能聚合物设计的多尺度仿真和机器学习
- 批准号:
2237470 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
Multiscale Biophotonics: A Platform for Interdisciplinary Biomedical Research Training and Career Development
多尺度生物光子学:跨学科生物医学研究培训和职业发展的平台
- 批准号:
10508978 - 财政年份:2022
- 资助金额:
$ 50.99万 - 项目类别:
Multiscale Biophotonics: A Platform for Interdisciplinary Biomedical Research Training and Career Development
多尺度生物光子学:跨学科生物医学研究培训和职业发展的平台
- 批准号:
10703493 - 财政年份:2022
- 资助金额:
$ 50.99万 - 项目类别:
CAREER: Multiscale Modeling of Peptide Self-Assembly with Experiment Directed Simulation
职业:通过实验引导模拟进行肽自组装的多尺度建模
- 批准号:
1751471 - 财政年份:2018
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
Cancer precision medicine through spatially informative single cell image and transcriptomics data analysis
通过空间信息单细胞图像和转录组学数据分析进行癌症精准医学
- 批准号:
10754028 - 财政年份:2016
- 资助金额:
$ 50.99万 - 项目类别: