CAREER: Lattice Point Distribution and Homogeneous Dynamics
职业:格点分布和齐次动力学
基本信息
- 批准号:1651563
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will use analytic and geometric tools to study classical problems in number theory. The basic arithmetic problems in question are finding, counting, and understanding the distribution of integer (or rational) solutions to algebraic equations that arise naturally in mathematics. The simplicity and intrinsic beauty of these problems, and the disproportionate depth and effort of their resolution, has inspired their study since ancient Greece. In many cases, the symmetries of the algebraic equations in question have a rich geometric and analytic structure. Using this structure it is possible to translate the arithmetic problems into geometric and dynamic problems on spaces of symmetries. Understanding how the arithmetic features of a problem manifest in the geometry of the corresponding space creates a link between arithmetic and geometric phenomena, and advances knowledge in both fields. The research in this proposal is complemented by educational and outreach activities, including the creation of a summer research workshop and a graduate seminar on analytic number theory.The PI will study two types of problems in homogenous dynamics, both originating from arithmetic. The first type of problems are shrinking target problems for unipotent flows on homogenous spaces. Shrinking target problems for diagonalizable group actions on homogenous spaces are very well understood. The corresponding problems for unipotent flows (as well as other slow mixing actions) are not yet understood, except for some special arithmetic cases. The PI will use methods from spectral theory and analytic number theory, in combination with methods of homogenous dynamics and ergodic theory, in order to analyze shrinking target problems for unipotent flows and their applications to the classical field of metric Diophantine approximations. The second type of problems regards the distribution of translates of closed orbits on homogenous spaces. The study of the distribution of translates of closed subgroup-orbits is an interesting problem with many applications. When the orbits are compact, or of finite measure, there are a number of techniques to study the limiting distribution of their translates, and these can be applied to study the classical problem of distribution of integer points in algebraic varieties; they are also amenable to more analytic applications in the study of L-functions of automorphic forms. The PI will extend such results to orbits of infinite measure, with an emphasis on cases having interesting arithmetic applications.
该项目将使用解析和几何工具来研究数论中的经典问题。所讨论的基本算术问题是查找、计算和理解数学中自然出现的代数方程的整数(或有理)解的分布。这些问题的简单性和内在之美,以及解决这些问题的不成比例的深度和努力,自古希腊以来一直激发着他们的研究。在许多情况下,所讨论的代数方程的对称性具有丰富的几何和解析结构。使用这种结构可以将算术问题转化为对称空间上的几何和动力学问题。了解问题的算术特征如何在相应空间的几何中体现,可以在算术和几何现象之间建立联系,并增进这两个领域的知识。该提案中的研究得到了教育和外展活动的补充,包括创建夏季研究研讨会和解析数论研究生研讨会。PI将研究齐次动力学中的两类问题,两者都源于算术。第一类问题是同质空间上单能流的收缩目标问题。同质空间上可对角化群动作的收缩目标问题是很好理解的。除了一些特殊的算术情况外,单能流(以及其他慢混合动作)的相应问题尚未被理解。 PI将使用谱论和解析数论的方法,结合齐次动力学和遍历理论的方法,来分析单能流的收缩目标问题及其在度量丢番图近似的经典领域中的应用。 第二类问题涉及同质空间上闭合轨道平移的分布。封闭子群轨道平移分布的研究对于许多应用来说是一个有趣的问题。当轨道是紧致的或有限测度时,有多种技术可以研究其平移的极限分布,这些技术可以应用于研究代数簇中整数点分布的经典问题;它们还适合在自守形式的 L 函数研究中进行更多分析应用。 PI 将把这些结果扩展到无限测量的轨道,重点是具有有趣的算术应用的情况。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
VALUES OF RANDOM POLYNOMIALS IN SHRINKING TARGETS
收缩目标中随机多项式的值
- DOI:10.1090/tran/8204
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Kelmer, Dubi Yu
- 通讯作者:Kelmer, Dubi Yu
Exponents for the equidistribution of shears and applications
- DOI:10.1016/j.jnt.2019.08.024
- 发表时间:2020-03-01
- 期刊:
- 影响因子:0.7
- 作者:Kelmer, Dubi;Kontorovich, Alex
- 通讯作者:Kontorovich, Alex
Shrinking targets for the geodesic flow on geometrically finite hyperbolic manifolds
几何有限双曲流形上测地流的收缩目标
- DOI:10.3934/jmd.2021014
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Kelmer, Dubi;Oh, Hee
- 通讯作者:Oh, Hee
Effective Density for Inhomogeneous Quadratic Forms I: Generic Forms and Fixed Shifts
- DOI:10.1093/imrn/rnaa206
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Anish Ghosh;Dubi Kelmer;Shucheng Yu
- 通讯作者:Anish Ghosh;Dubi Kelmer;Shucheng Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dubi Kelmer其他文献
Shrinking targets problems for flows on homogeneous spaces
均匀空间上流动的收缩目标问题
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Dubi Kelmer;Shucheng Yu - 通讯作者:
Shucheng Yu
A Quantitative Oppenheim Theorem for generic ternary quadratic forms
泛型三元二次型的定量奥本海姆定理
- DOI:
10.3934/jmd.2018001 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Anish Ghosh;Dubi Kelmer - 通讯作者:
Dubi Kelmer
Quadratic irrationals and linking numbers of modular knots
- DOI:
10.3934/jmd.2012.6.539 - 发表时间:
2012-05 - 期刊:
- 影响因子:0
- 作者:
Dubi Kelmer - 通讯作者:
Dubi Kelmer
Shrinking targets for semisimple groups
半简单群的收缩目标
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Anish Ghosh;Dubi Kelmer - 通讯作者:
Dubi Kelmer
On distribution of poles of Eisenstein series and the length spectrum of hyperbolic manifolds
关于爱森斯坦级数的极点分布和双曲流形的长度谱
- DOI:
10.1093/imrn/rnv051 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Dubi Kelmer - 通讯作者:
Dubi Kelmer
Dubi Kelmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dubi Kelmer', 18)}}的其他基金
Spectral theory and dynamics on hyperbolic manifolds
双曲流形的谱理论和动力学
- 批准号:
1401747 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
基于自适应笛卡尔网格-格子波尔兹曼方法和自动微分方法的高效非定常流动导数计算方法研究
- 批准号:12302379
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
熵格子玻尔兹曼方法的边界处理及收敛性分析研究
- 批准号:12301520
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玻色-费米混合超流中的涡旋和涡旋格子态研究
- 批准号:12375017
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于格子Boltzmann方法和深度学习的多相渗流多尺度模型和机理研究
- 批准号:52376068
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于数据同化的湍流亚格子模型改进方法
- 批准号:12302283
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Doping and solid solution in SnS: introduction of cations using metals with low melting point as a reaction field
SnS中的掺杂和固溶:使用低熔点金属作为反应场引入阳离子
- 批准号:
20H02495 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
study on discrete point sets to produce new applications of lattice theory and algebraic computation
研究离散点集以产生格论和代数计算的新应用
- 批准号:
19K03628 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of random phenomena and its applications from the viewpoint of determinantal point processes
从行列式点过程的角度分析随机现象及其应用
- 批准号:
18H01124 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Polarity control and point defects in low temperature grown polycrystalline zinc oxide thin films
低温生长多晶氧化锌薄膜的极性控制和点缺陷
- 批准号:
17K06356 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characteristics of Japanese with S allele of the serotonin transporter gene from the point of view of physiological anthropology
从生理人类学角度探讨血清素转运蛋白基因S等位基因日本人的特征
- 批准号:
15K14620 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research