University of Missouri-Kansas City Planning Grant: I/UCRC for Big Learning
密苏里大学堪萨斯分校城市规划补助金:I/UCRC 大学习
基本信息
- 批准号:1650549
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-15 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The mission of the proposed NSF I/UCRC Center for Big Learning (CBL) is to explore research frontiers in emerging large-scale deep learning (DL) to realize effective and efficient computational intelligence, design novel learning algorithms and system mechanisms for intelligence research and applications in the era of big data and big systems. Through the big learning consortium of multiple academic sites (in collaboration with Florida, CMU, and Oregon) and a large number of industry partners, the center seeks to catalyze the fusion of wisdom from academia, government, industry stakeholders, the rapid innovation in algorithms, systems, and education, and technology transfer into cutting-edge products and services with real-world relevance and significance. Broader Impacts of the proposed center: with the explosive growth of data generated from natural systems, engineered systems, and human/life activities, we need intelligent software and hardware to facilitate our decision making with distilled insights automatically at scale. The proposed I/UCRC Center for Big Learning is a timely initiative as our society moves towards intelligence-enabled world of opportunities. The Big Learning consortium is expected to become the magnet of deep learning research and applications and attract leading researchers, enthusiastic entrepreneurs, IT and industry giants working together on accomplishing the promising missions and visions of CBL. In particular, CBL has the following broader impacts. (1) Making significant contributions and impacts to the deep learning community on pioneering research and applications to address a broad spectrum of real-world challenges. (2) Making significant contributions and impacts to promote products and services of industry in general and our members in particular. (3) Making significant contributions and impacts to the urgently needed education of our next-generation talents with real-world settings and world-class mentors from both academia and industry. (4) Our meetings, forums, conferences, and planned training sessions will greatly promote and broaden the research and materialization of DL.With dramatic breakthroughs in signal compression, classification and identification in multiple modalities of challenges (e.g., image, video, speech, text, and life, health & science data), the renaissance of computational intelligence is looming. The mission of the CBL is to pioneer in this emerging trend through united and coordinated efforts and deep integration and fusion of broad expertise from our large number of faculty members, students, and industry partners. The vision of CBL is to create intelligence enablers towards intelligence-driven society. CBL possesses the pioneering intellectual merit in the following key research themes. (1) Novel algorithms. This theme focuses on novel DL algorithms and architectures, such as deep architectures, complex deep neural networks, brain-inspired components, optimization and acceleration of the deep learning, neural machines, and adaptation of conventional machine learning algorithms. (2) Novel systems. We propose novel resource management strategies, heterogeneous architectures, and software tool kits for embedded devices, mobiles, desktops, clusters, and clouds. (3) Novel applications in business, health, imaging, and smart things, including deep residual networks in new image/video modeling and compression, RNN for large scale context models in entropy coding, large scale visual object re-identification, and targeted drug delivery with imaging. During the planning phase, we will establish a solid center strategic plan, marketing plan, and the consortium of big learning that consists of five academic sites and several dozens of industrial members.
拟议的 NSF I/UCRC 大学习中心 (CBL) 的使命是探索新兴大规模深度学习 (DL) 的研究前沿,以实现有效且高效的计算智能,设计新颖的学习算法和系统机制,用于智能研究和大数据和大系统时代的应用。通过多个学术站点(与佛罗里达州、卡耐基梅隆大学和俄勒冈州合作)和大量行业合作伙伴组成的大型学习联盟,该中心力求催化学术界、政府、行业利益相关者的智慧融合,算法的快速创新、系统、教育和技术转化为具有现实世界相关性和意义的尖端产品和服务。 拟议中心的更广泛影响:随着自然系统、工程系统和人类/生命活动生成的数据爆炸式增长,我们需要智能软件和硬件来通过大规模自动提炼的见解来促进我们的决策。随着我们的社会迈向充满机遇的智能世界,拟建的 I/UCRC 大学习中心是一项及时的举措。大学习联盟预计将成为深度学习研究和应用的磁石,吸引领先的研究人员、热情的企业家、IT 和行业巨头共同努力实现 CBL 的美好使命和愿景。特别是,CBL 具有以下更广泛的影响。 (1) 在开拓性研究和应用方面为深度学习社区做出重大贡献和影响,以解决广泛的现实世界挑战。 (2) 为推广整个行业、特别是我们的会员的产品和服务做出重大贡献和影响。 (3)通过现实世界的环境和来自学术界和工业界的世界级导师,为迫切需要的下一代人才教育做出重大贡献和影响。 (4) 我们的会议、论坛、会议和计划的培训课程将极大地促进和拓宽深度学习的研究和实现。在多种挑战模式(例如图像、视频、语音、文本,以及生命、健康和科学数据),计算智能的复兴迫在眉睫。 CBL的使命是通过团结协作的努力,以及我们众多教职员工、学生和行业合作伙伴的广泛专业知识的深度整合和融合,引领这一新兴趋势。 CBL 的愿景是创造智能推动者,迈向智能驱动的社会。 CBL 在以下关键研究主题中拥有开创性的智力价值。 (1)新颖的算法。该主题重点关注新颖的深度学习算法和架构,例如深度架构、复杂的深度神经网络、类脑组件、深度学习的优化和加速、神经机器以及传统机器学习算法的适应。 (2)系统新颖。我们为嵌入式设备、移动设备、桌面设备、集群和云提出新颖的资源管理策略、异构架构和软件工具包。 (3) 在商业、健康、成像和智能事物方面的新应用,包括新图像/视频建模和压缩中的深度残差网络、熵编码中用于大规模上下文模型的RNN、大规模视觉对象重新识别和靶向药物与成像交付。在规划阶段,我们将建立扎实的中心战略规划、营销规划以及由五个学术点和数十个行业成员组成的大学习联盟。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RUPEE: Scalable protein structure search using run position encoded residue descriptors
- DOI:10.1109/bibm.2017.8217627
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:Ronald Ayoub;Yugyung Lee
- 通讯作者:Ronald Ayoub;Yugyung Lee
Exploring social contextual influences on healthy eating using big data analytics
- DOI:10.1109/bibm.2017.8217885
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:V. K. Yeruva;S. Junaid;Yugyung Lee
- 通讯作者:V. K. Yeruva;S. Junaid;Yugyung Lee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhu Li其他文献
Parameter identification of a class of nonlinear systems based on the multi-innovation identification theory
基于多新辨识理论的一类非线性系统参数辨识
- DOI:
10.1016/j.jfranklin.2015.07.003 - 发表时间:
2015-10 - 期刊:
- 影响因子:4.1
- 作者:
Wang Cheng;Zhu Li - 通讯作者:
Zhu Li
UV-visible photocurrent enhancement using metal-semiconductor-metal with symmetric and asymmetric double Schottky barriers
使用具有对称和不对称双肖特基势垒的金属-半导体-金属增强紫外-可见光电流
- DOI:
10.1039/c8nr02466a - 发表时间:
2018 - 期刊:
- 影响因子:6.7
- 作者:
Zhu Li;Liu Kai;Hu Taozheng;Dong Wen;Chen Zhuo;Wang Zhenlin - 通讯作者:
Wang Zhenlin
An Automatic Calibration Method in the Crop Architecture 3D Scanner
作物结构 3D 扫描仪的自动校准方法
- DOI:
10.4028/www.scientific.net/amr.204-210.493 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Shengyong Xu;D. Li;Zhu Li;Qing Wei - 通讯作者:
Qing Wei
Explicit quasi-periodic solutions of the Kaup–Newell hierarchy
Kaup-Newell 层次结构的显式准周期解
- DOI:
10.1016/j.jmaa.2015.01.021 - 发表时间:
2015-05 - 期刊:
- 影响因子:1.3
- 作者:
Xianguo Geng;Zhu Li;Bo Xue;Liang Guan - 通讯作者:
Liang Guan
Links between global CO2 variability and climate anomalies of biomes
全球二氧化碳变化与生物群落气候异常之间的联系
- DOI:
10.1007/s11430-008-0024-5 - 发表时间:
2008-09 - 期刊:
- 影响因子:0
- 作者:
Zhou Tao;Yi ChuiXiang;Zhu Li;Peter S. Bakwin - 通讯作者:
Peter S. Bakwin
Zhu Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhu Li', 18)}}的其他基金
Phase I IUCRC University of Missouri-Kansas City: Center for Big Learning (CBL)
第一阶段 IUCCRC 密苏里大学堪萨斯城分校:大学习中心 (CBL)
- 批准号:
1747751 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
相似海外基金
The University of Kansas Cancer Center's- MCA Rural NCORP
堪萨斯大学癌症中心 - MCA Rural NCORP
- 批准号:
10672221 - 财政年份:2019
- 资助金额:
$ 1.5万 - 项目类别:
The University of Kansas Cancer Center's- MCA Rural NCORP
堪萨斯大学癌症中心 - MCA Rural NCORP
- 批准号:
10229548 - 财政年份:2019
- 资助金额:
$ 1.5万 - 项目类别:
The University of Kansas Cancer Center's- MCA Rural NCORP
堪萨斯大学癌症中心 - MCA Rural NCORP
- 批准号:
10460177 - 财政年份:2019
- 资助金额:
$ 1.5万 - 项目类别:
Mid-America Regional Coordinating Center (MARCC)
中美洲区域协调中心 (MARCC)
- 批准号:
10463662 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Phase I IUCRC University of Missouri-Kansas City: Center for Big Learning (CBL)
第一阶段 IUCCRC 密苏里大学堪萨斯城分校:大学习中心 (CBL)
- 批准号:
1747751 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant