Phase I IUCRC University of Missouri-Kansas City: Center for Big Learning (CBL)

第一阶段 IUCCRC 密苏里大学堪萨斯城分校:大学习中心 (CBL)

基本信息

  • 批准号:
    1747751
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

This project establishes the NSF Industry/University Collaborative Research Center (I/UCRC) for Big Learning (CBL) to accelerate innovation and impact of Deep Learning in various embedded applications. The vision is to create intelligence towards intelligence-driven society. Through catalyzing the fusion of diverse expertise from the consortium of faculty members, students, industry partners, and federal agencies, CBL seeks to create state-of-the-art deep learning methodologies and technologies and enable intelligent applications, transforming broad domains, such as business, healthcare, Internet-of-Things, and cybersecurity. This timely initiative creates a unique platform for empowering our next-generation talents with cutting-edge technologies of societal relevance and significance. The University of Missouri at Kansas City (UMKC) site focuses on the deep learning in embedded systems for mobile and IoT applications. It is based on a framework called DeepLite for deep learning model compression and acceleration that can fit cutting edge deep learning capabilities in embedded systems with very limited computing, storage, communication and power capabilities. DeepLite allows embedded deep learning model training and compression for power, storage, computation complexity tradeoffs with learning performances for targeted embedded applications like immersive content capture, depth and action sensing, visual surveillance, next gen image and video compression and communication. CBL is expected to make wide ranging and long lasting impact to machine learning algorithm, system and application research, accelerating deep learning technology innovation and adoption in the real world, enable transformative new capabilities and new applications in all aspect of society, from education, medicine, media, to security and defense. CBL seamlessly integrates innovation, engineering education, technology business incubation, and community engagement. It facilitates closer interactions and cross pollination of ideas between academia and industry, broaden the research horizon for faculties and students, while help shrink the time to impact and time to market of new technology. The center repository will be hosted at http://nsfcbl.org. The data, code, documents will be well organized and maintained on the CBL servers for the duration of the center for more than five years and beyond. The internal code repository will be managed by GitLab. After the software packages are well documented and tested, they will be released and managed by popular public code hosting services, such as GitHub and Bitbucket.
该项目建立了 NSF 工业/大学大学习合作研究中心 (I/UCRC),以加速深度学习在各种嵌入式应用中的创新和影响。愿景是创造智能,迈向智能驱动的社会。通过促进教师、学生、行业合作伙伴和联邦机构联盟的不同专业知识的融合,CBL 致力于创建最先进的深度学习方法和技术,并实现智能应用,从而改变广泛的领域,例如商业、医疗保健、物联网和网络安全。这一及时的举措创造了一个独特的平台,为我们的下一代人才提供具有社会相关性和意义的尖端技术。密苏里大学堪萨斯城分校 (UMKC) 网站专注于移动和物联网应用嵌入式系统的深度学习。它基于一个名为 DeepLite 的深度学习模型压缩和加速框架,可以适应计算、存储、通信和功耗能力非常有限的嵌入式系统中的尖端深度学习功能。 DeepLite 允许嵌入式深度学习模型训练和压缩,以便在功耗、存储、计算复杂性与目标嵌入式应用的学习性能之间进行权衡,例如沉浸式内容捕获、深度和动作传感、视觉监控、下一代图像和视频压缩和通信。 CBL有望对机器学习算法、系统和应用研究产生广泛而持久的影响,加速深度学习技术在现实世界的创新和采用,在教育、医学等社会各方面实现变革性的新能力和新应用、媒体、安全和国防。 CBL 将创新、工程教育、技术企业孵化和社区参与无缝集成。它促进了学术界和工业界之间更密切的互动和思想交叉授粉,拓宽了教师和学生的研究视野,同时有助于缩短新技术产生影响和上市的时间。中心存储库将托管在 http://nsfcbl.org。数据、代码、文档将在 CBL 服务器上妥善组织和维护,中心存续期间将持续五年以上甚至更长时间。内部代码存储库将由 GitLab 管理。软件包经过充分记录和测试后,将由流行的公共代码托管服务(例如 GitHub 和 Bitbucket)发布和管理。

项目成果

期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Privacy-preserving fall detection with deep learning on mmWave radar signal
  • DOI:
    10.1109/vcip47243.2019.8965661
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sun, Y.;Hang, R.;Xu, K.
  • 通讯作者:
    Xu, K.
Network Update Compression for Federated Learning
$\lambda$-Domain Perceptual Rate Control for 360-Degree Video Compression
Advanced CNN Based Motion Compensation Fractional Interpolation
Fast Approximate Score Computation on Large-Scale Distributed Data for Learning Multinomial Bayesian Networks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhu Li其他文献

UV-visible photocurrent enhancement using metal-semiconductor-metal with symmetric and asymmetric double Schottky barriers
使用具有对称和不对称双肖特基势垒的金属-半导体-金属增强紫外-可见光电流
  • DOI:
    10.1039/c8nr02466a
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Zhu Li;Liu Kai;Hu Taozheng;Dong Wen;Chen Zhuo;Wang Zhenlin
  • 通讯作者:
    Wang Zhenlin
Parameter identification of a class of nonlinear systems based on the multi-innovation identification theory
基于多新辨识理论的一类非线性系统参数辨识
Early-age creep behavior of concrete-filled steel tubular members subjected to axial compression
轴压钢管混凝土构件的早期徐变行为
  • DOI:
    10.1016/j.jcsr.2020.105939
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Jiao Yuying;Han Bing;Xie Huibing;Zhu Li;Zhou Lidong
  • 通讯作者:
    Zhou Lidong
Guest Editorial Multimedia Economics for Future Networks: Theory, Methods, and Applications
客座社论未来网络的多媒体经济学:理论、方法和应用
Down-Regulation of a Nicotinate Phosphoribosyltransferase Gene, OsNaPRT1, Leads to Withered Leaf Tips
烟酸磷酸核糖转移酶基因 OsNaPRT1 的下调导致叶尖枯萎
  • DOI:
    10.1104/pp.15.01898
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Wu Liwen;Ren Deyong;Hu Shikai;Li Gengmi;Dong Guojun;Jiang Liang;Hu Xingming;Ye Weijun;Cui Yongtao;Zhu Li;Hu Jiang;Zhang Guangheng;Gao Zhenyu;Zeng Dali;Qian Qian;Guo Longbiao
  • 通讯作者:
    Guo Longbiao

Zhu Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhu Li', 18)}}的其他基金

University of Missouri-Kansas City Planning Grant: I/UCRC for Big Learning
密苏里大学堪萨斯分校城市规划补助金:I/UCRC 大学习
  • 批准号:
    1650549
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似海外基金

IUCRC Phase I University of Wisconsin-Milwaukee: Center for Concrete Advancement Network (CAN), Lead Site
IUCRC 第一阶段威斯康星大学密尔沃基分校:混凝土进步网络中心 (CAN),主要站点
  • 批准号:
    2310861
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
IUCRC Phase III University of Colorado Boulder: Center for Membrane Applications, Science and Technology (MAST)
IUCRC 第三阶段科罗拉多大学博尔德分校:膜应用、科学与技术中心 (MAST)
  • 批准号:
    2310937
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
IUCRC Phase I Boston University: Center for Systems Innovation at Scale (i-Scale)
IUCRC 第一阶段波士顿大学:大规模系统创新中心 (i-Scale)
  • 批准号:
    2333320
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
IUCRC Phase I Northeastern University: Center for Systems Innovation at Scale (i-Scale)
IUCRC 第一期东北大学:规模系统创新中心 (i-Scale)
  • 批准号:
    2333352
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
IUCRC Phase III The Pennsylvania State University: Center for Membrane Applications, Science and Technology (MAST)
IUCRC 第三期宾夕法尼亚州立大学:膜应用、科学与技术中心 (MAST)
  • 批准号:
    2310832
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了