NRI: Real-Time Semantic Computer Vision for Co-Robotics

NRI:协作机器人的实时语义计算机视觉

基本信息

  • 批准号:
    1637941
  • 负责人:
  • 金额:
    $ 71.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This project develops real-time object recognition algorithms that generate extensive semantic object descriptions as a side effect of recognition. This side-information includes perceived object costs, attributes (object properties), and affordances (actions afforded by objects). With these, the act of recognizing a "door knob" would automatically produce the information that this is a "flexible" object, "made of metal," which "can be grasped" and "can be twisted," but "cannot be eaten." For robotics, this information is sometimes more important than the recognition of the object itself. The project enables robots to perform zero shot learning, e.g. learn to recognize door knobs by simply being told that these are objects that "are flexible, made of metal, can be grasped and twisted but not eaten." The research has applicability in areas such as manufacturing, intelligent systems, assisted living, and homeland security. Educationally, the project provides an exciting opportunity for undergraduate research.This research develops new methods for top-down (task-driven) regularization of deep learning algorithms, though a combination of structural and loss-based regularizers. Structural regularizers constrain object and scene recognition models to guarantee speed and automatic generation of rich mid-level semantic (MLS) descriptions as a side effect of recognition. Loss-based regularizers penalize errors in the multiple semantic outputs of these models, enabling simultaneously high performance in object recognition, MLS predictions, and zero-shot learning. The resulting learning algorithms will endow robots with human-like abilities to infer rich MLS descriptions of objects and scenes as a "side effect" of object recognition and scene classification, in real-time. These contributions will be developed in the context of a new co-robotics problem, person-following unmanned aerial vehicles, where computer vision plays a mission critical role for tasks such as control and semantic motion planning but whose requirements in terms of speed and MLS inference are far superior to what is feasible today.
该项目开发了实时对象识别算法,该算法生成广泛的语义对象描述作为识别的副作用。此侧信息包括感知的对象成本,属性(对象属性)和负担(对象提供的操作)。有了这些,识别“门旋钮”的行为会自动产生这是“柔性”对象,由金属制成的物体,“可以抓住”和“可以扭曲”,但“不能食用”。对于机器人技术,这些信息有时比对象本身的识别更重要。该项目使机器人可以执行零射击学习,例如学会通过简单地被告知这些物体“柔韧,由金属制成,可以被握住,但不会吃掉”来识别门旋钮。”该研究在制造,智能系统,辅助生活和国土安全方面具有适用性。从教育上讲,该项目为本科研究提供了一个令人兴奋的机会。这项研究开发了新的(任务驱动)深度学习算法正规化的新方法,尽管结合了结构性和基于损失的正规化器。结构正规化器将对象和场景识别模型限制,以确保速度和自动生成丰富的中级语义(MLS)描述作为识别的副作用。基于损耗的正规化器会在这些模型的多个语义输出中惩罚错误,从而在对象识别,MLS预测和零局学习中同时具有高性能。由此产生的学习算法将赋予人类般的能力,以实时推断对象和场景的丰富MLS描述作为对象识别和场景分类的“副作用”。这些贡献将在一个新的共同机器人问题的背景下开发,该问题是以人为目标的无人驾驶汽车,在这些问题上,计算机视觉在控制和语义运动计划等任务中起着至关重要的作用,但其在速度和MLS推理方面的要求远远超过了当今可行的。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rethinking Differentiable Search for Mixed-Precision Neural Networks
Object based Scene Representations using Fisher Scores of Local Subspace Projections
  • DOI:
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mandar Dixit;N. Vasconcelos
  • 通讯作者:
    Mandar Dixit;N. Vasconcelos
RESOUND: Towards Action Recognition Without Representation Bias
  • DOI:
    10.1007/978-3-030-01231-1_32
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Yingwei;Li, Yi;Vasconcelos, Nuno
  • 通讯作者:
    Vasconcelos, Nuno
Deep Scene Image Classification with the MFAFVNet
Bidirectional Learning for Domain Adaptation of Semantic Segmentation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nuno Vasconcelos其他文献

Advanced methods for robust object detection
用于稳健物体检测的先进方法
Towards Calibrated Multi-label Deep Neural Networks
迈向校准的多标签深度神经网络
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiacheng Cheng;Nuno Vasconcelos
  • 通讯作者:
    Nuno Vasconcelos

Nuno Vasconcelos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nuno Vasconcelos', 18)}}的其他基金

RI:Small:Dynamic Networks for Efficient, Adaptive, and Multimodal Vision
RI:Small:用于高效、自适应和多模态视觉的动态网络
  • 批准号:
    2303153
  • 财政年份:
    2023
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
FAI: Towards Holistic Bias Mitigation in Computer Vision Systems
FAI:迈向计算机视觉系统中的整体偏差缓解
  • 批准号:
    2041009
  • 财政年份:
    2021
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
NRI: FND: Towards Scalable and Self-Aware Robotic Perception
NRI:FND:迈向可扩展和自我意识的机器人感知
  • 批准号:
    1924937
  • 财政年份:
    2019
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: IA: Quantifying Plankton Diversity with Taxonomy and Attribute Based Classifiers of Underwater Microscope Images
大数据:合作研究:IA:利用水下显微镜图像的分类和属性分类器量化浮游生物多样性
  • 批准号:
    1546305
  • 财政年份:
    2016
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
NRI-Small: A Biologically Plausible Architecture for Robotic Vision
NRI-Small:一种生物学上合理的机器人视觉架构
  • 批准号:
    1208522
  • 财政年份:
    2012
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
Large-vocabulary Semantic Image Processing: Theory and Algorithms
大词汇量语义图像处理:理论与算法
  • 批准号:
    0830535
  • 财政年份:
    2008
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
RI-Small: Optimal Automated Design of Cascaded Object Detectors
RI-Small:级联物体检测器的优化自动化设计
  • 批准号:
    0812235
  • 财政年份:
    2008
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
Understanding Video of Crowded Environments
了解拥挤环境的视频
  • 批准号:
    0534985
  • 财政年份:
    2005
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Continuing Grant
CAREER: Weakly Supervised Recognition
职业:弱监督识别
  • 批准号:
    0448609
  • 财政年份:
    2005
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Continuing Grant

相似国自然基金

己酸二元发酵体系中甲烷菌促进己酸生成的机制研究
  • 批准号:
    31501461
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
多维马氏体的数学建模及其高精度数值模拟方法
  • 批准号:
    11171218
  • 批准年份:
    2011
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
体数据表达与绘制的新方法研究
  • 批准号:
    61170206
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
mRNA推断皮肤损伤时间的多因子与多因素实验研究
  • 批准号:
    81172902
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于孢子捕捉器和实时定量PCR技术的空气中小麦白粉菌的监测技术研究
  • 批准号:
    31171793
  • 批准年份:
    2011
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

NRI: FND: Dexterous Manipulation Using Multi-Serial Manipulator Systems with Real-Time Compliance Modulation
NRI:FND:使用具有实时顺应性调制的多串行机械手系统进行灵巧操纵
  • 批准号:
    2024554
  • 财政年份:
    2020
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: A Dynamic Bayesian Approach to Real-Time Estimation and Filtering in Grasp Acquisition and other Contact Tasks (Continuation)
NRI:协作研究:在抓取采集和其他接触任务中进行实时估计和过滤的动态贝叶斯方法(续)
  • 批准号:
    1537023
  • 财政年份:
    2015
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: A Dynamic Bayesian Approach to Real Time Estimation and Filtering in Grasp Acquisition and Other Contact Tasks (Continuation)
NRI:协作研究:抓取采集和其他接触任务中实时估计和过滤的动态贝叶斯方法(续)
  • 批准号:
    1537257
  • 财政年份:
    2015
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
NRI: Real Time Observation, Inference and Intervention of Co-Robot Systems Towards Individually Customized Performance Feedback Based on Students' Affective States
NRI:协作机器人系统的实时观察、推理和干预,以实现基于学生情感状态的个性化定制表现反馈
  • 批准号:
    1527148
  • 财政年份:
    2015
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
NRI-Small: Collaborative Research: A Dynamic Bayesian Approach to Real-Time Estimation and Filtering in Grasp Acquisition and Other Contact Tasks
NRI-Small:协作研究:在抓取采集和其他接触任务中进行实时估计和过滤的动态贝叶斯方法
  • 批准号:
    1208463
  • 财政年份:
    2012
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了