Large-vocabulary Semantic Image Processing: Theory and Algorithms
大词汇量语义图像处理:理论与算法
基本信息
- 批准号:0830535
- 负责人:
- 金额:$ 23.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Classical image processing has mostly disregarded semantic image representations, in favor of more mathematically tractable representations based on low?]level signal properties (frequency decompositions, mean squared error, etc.). This is unlike biological solutions to image processingproblems, which rely extensively on understanding of scene content. For example, regions of faces are usually processed more carefully than the bushes in the background. The inability to tune image processing to the semantic relevance of image content frequently leads to the sub?]optimal allocation ofresources, such as bandwidth, error protection, or viewing time, to image areas that are perceptually irrelevant. One of the main obstacles to the deployment of semantic image processing systems has been the difficulty of training content?]understanding systems with large scale vocabularies. This is, in great part, due to the requirement for large amounts of training data and intensive human supervision associated with the classical methods for vocabulary learning. This research aims to establish a foundation for semantic image processing systems that can learn large scale vocabularies frominformally annotated data and no additional human supervision. It builds on recent advances in semantic image labeling, which have made it possible to learn vocabularies from noisy training data, such as that massively (and inexpensively) available on the web. The research studies both theoreticalissues in vocabulary learning, and the design of image processing algorithms that tune their behavior according to the content of the images being processed. Semantic image processing could lead to transformative advances in areas such as image compression, enhancement, encryption, de?]noising, orsegmentation, among others, which are of interest for applications as diverse as medical imaging, image search and retrieval, or security and surveillance.
经典图像处理大多忽略了语义图像表示,以基于低的信号属性(频率分解,平均平方错误等)更有利于数学上可触犯的表示。这与图像处理问题的生物解决方案不同,该解决方案广泛依赖于对场景内容的理解。例如,通常比背景中的灌木丛更谨慎地处理面部区域。无法调整图像处理图像内容的语义相关性通常会导致子?]最佳分配,例如带宽,错误保护或查看时间,到感知上无关紧要的图像区域。语义图像处理系统部署的主要障碍之一是训练内容的困难吗?]了解具有大型词汇的系统。在很大程度上,这是由于需要大量培训数据以及与词汇学习的经典方法相关的大量培训数据。这项研究旨在为语义图像处理系统建立基础,该系统可以从文献注释的数据中学习大规模词汇,而没有其他人类的监督。它以语义图像标签的最新进展为基础,这使得从嘈杂的训练数据中学习词汇是可能的,例如在网络上可以大量(和便宜)。研究研究词汇学习中的理论上以及根据所处理图像的内容调整其行为的图像处理算法的设计。语义图像处理可能会导致在图像压缩,增强,加密,de?] Noising,de sementation等领域的变革性进步,这些应用程序对于像医学成像,图像搜索和检索或安全性和安全性和监视的应用一样多样化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nuno Vasconcelos其他文献
Advanced methods for robust object detection
用于稳健物体检测的先进方法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Zhaowei Cai;Nuno Vasconcelos - 通讯作者:
Nuno Vasconcelos
Towards Calibrated Multi-label Deep Neural Networks
迈向校准的多标签深度神经网络
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jiacheng Cheng;Nuno Vasconcelos - 通讯作者:
Nuno Vasconcelos
Nuno Vasconcelos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nuno Vasconcelos', 18)}}的其他基金
RI:Small:Dynamic Networks for Efficient, Adaptive, and Multimodal Vision
RI:Small:用于高效、自适应和多模态视觉的动态网络
- 批准号:
2303153 - 财政年份:2023
- 资助金额:
$ 23.95万 - 项目类别:
Standard Grant
FAI: Towards Holistic Bias Mitigation in Computer Vision Systems
FAI:迈向计算机视觉系统中的整体偏差缓解
- 批准号:
2041009 - 财政年份:2021
- 资助金额:
$ 23.95万 - 项目类别:
Standard Grant
NRI: FND: Towards Scalable and Self-Aware Robotic Perception
NRI:FND:迈向可扩展和自我意识的机器人感知
- 批准号:
1924937 - 财政年份:2019
- 资助金额:
$ 23.95万 - 项目类别:
Standard Grant
NRI: Real-Time Semantic Computer Vision for Co-Robotics
NRI:协作机器人的实时语义计算机视觉
- 批准号:
1637941 - 财政年份:2016
- 资助金额:
$ 23.95万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: IA: Quantifying Plankton Diversity with Taxonomy and Attribute Based Classifiers of Underwater Microscope Images
大数据:合作研究:IA:利用水下显微镜图像的分类和属性分类器量化浮游生物多样性
- 批准号:
1546305 - 财政年份:2016
- 资助金额:
$ 23.95万 - 项目类别:
Standard Grant
NRI-Small: A Biologically Plausible Architecture for Robotic Vision
NRI-Small:一种生物学上合理的机器人视觉架构
- 批准号:
1208522 - 财政年份:2012
- 资助金额:
$ 23.95万 - 项目类别:
Standard Grant
RI-Small: Optimal Automated Design of Cascaded Object Detectors
RI-Small:级联物体检测器的优化自动化设计
- 批准号:
0812235 - 财政年份:2008
- 资助金额:
$ 23.95万 - 项目类别:
Standard Grant
Understanding Video of Crowded Environments
了解拥挤环境的视频
- 批准号:
0534985 - 财政年份:2005
- 资助金额:
$ 23.95万 - 项目类别:
Continuing Grant
CAREER: Weakly Supervised Recognition
职业:弱监督识别
- 批准号:
0448609 - 财政年份:2005
- 资助金额:
$ 23.95万 - 项目类别:
Continuing Grant
相似国自然基金
中文词汇语义加工认知机制的计算建模及实验研究
- 批准号:32371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于定义性数据的预训练语言模型词汇语义增强技术
- 批准号:62176002
- 批准年份:2021
- 资助金额:57.00 万元
- 项目类别:面上项目
基于定义性数据的预训练语言模型词汇语义增强技术
- 批准号:
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
词汇语义表征个体差异的认知神经机制研究
- 批准号:32171052
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
运用语言知识分布模型构建基于具身语义关联机制的数据库-语料库-词汇学习的AI优化系统
- 批准号:
- 批准年份:2020
- 资助金额:48 万元
- 项目类别:
相似海外基金
Spatiotemporal Dynamics of Language Processing in School-Age Children with Mild-to-Severe Hearing Loss
轻度至重度听力损失学龄儿童语言处理的时空动态
- 批准号:
10652918 - 财政年份:2023
- 资助金额:
$ 23.95万 - 项目类别:
Neurolinguistic development in 4 to 8 year-old late talkers with language delay
语言迟缓的 4 至 8 岁说话晚者的神经语言发育
- 批准号:
10539603 - 财政年份:2023
- 资助金额:
$ 23.95万 - 项目类别:
Research and development of an adverse outcome pathway-focused mechanistic inference tool for 'omics data using semantic knowledge graphs
使用语义知识图研究和开发针对“组学数据”的以不良结果途径为中心的机械推理工具
- 批准号:
10761637 - 财政年份:2023
- 资助金额:
$ 23.95万 - 项目类别:
Lexico-semantic abilities in early language growth and delay
早期语言发展和延迟的词汇语义能力
- 批准号:
10353391 - 财政年份:2021
- 资助金额:
$ 23.95万 - 项目类别:
FHIRCat: Enabling the Semantics of FHIR and Terminologies for Clinical and Translational Research
FHIRCat:为临床和转化研究提供 FHIR 语义和术语
- 批准号:
10558595 - 财政年份:2021
- 资助金额:
$ 23.95万 - 项目类别: