Research and development of an adverse outcome pathway-focused mechanistic inference tool for 'omics data using semantic knowledge graphs

使用语义知识图研究和开发针对“组学数据”的以不良结果途径为中心的机械推理工具

基本信息

  • 批准号:
    10761637
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary 1 Adverse outcome pathways (AOPs) are risk assessment tools that provide a transparent, mechanistic description of a 2 stressor resulting in an adverse outcome. Each AOP describes a logical sequence of measurable, causally linked events at 3 varying levels of a biological hierarchy (e.g., molecular, cell, organ, and population). Starting with exposure to a stressor, 4 and proceeding through a series of key events, each AOP terminates with an adverse outcome for the health of an 5 organism or population as a whole. Despite the great popularity of AOPs in risk assessment, there are few tools that can 6 exploit the rich mechanistic information they provide, especially quantitatively and in an automated setting. The lack of a 7 systematic framework for representing AOPs in a way that is amenable to quantitative analysis is an important obstacle 8 that limits their regulatory applications. We have developed a unique system, TOXGRAPH, to address the aforementioned 9 limitations. TOXGRAPH integrates biological and biochemical knowledge across a heterogeneous collection of open 10 biomedical ontologies and public databases: a massive, tissue-specific semantic knowledge graph (KG) curated entirely in- 11 house. We have also developed a deep learning-based model that maps unstructured textual AOP descriptions to specific 12 concepts in this KG. To take advantage of these semantic AOP representations, we have developed a framework that 13 allows us to turn AOPs into hypothesis validation tools, by generating enrichment statistics of AOPs an their individual 14 events. This approach can significantly simplify downstream analysis by calculating enrichment statistics at varying levels 15 of granularity, using the results of experimental datasets, such as the results of differential gene expression experiments 16 to quantify AOP enrichment. 17 The research we propose encompasses three specific aims: (1) improve our AOP enrichment statistics; (2) enhance our 18 NLP mapping of AOP event descriptions to biomedical knowledge graph concepts; (3) software engineering for improved 19 user experience with interactive visualizations. In the first aim, we will improve our model to account for multiple 20 experimental doses and time points concurrently for the enrichment of AOP events. In our second aim, we will improve 21 our semantic similarity model to map arbitrary AOP event descriptions to a controlled vocabulary. For this research, we 22 will employ state-of-the-art machine learning, NLP and text mining methodologies. In our third aim, we will develop a 23 web interface to the current command line tool which besides producing the same enrichment results and mechanistic 24 hypotheses will allow users to navigate the results in a lightweight, interactive 3D space. We envision this as a powerful 25 exploratory tool to generate mechanistic hypotheses, with the added ability to show enriched relations across time 26 points in this 3D space. 27 Our overarching goal is to provide an easy, intuitive, and unbiased (data-driven) framework for querying AOPs and 28 researching mechanism of action. TOXGRAPH will directly contribute towards the development of novel non-animal 29 testing strategies and streamline regulatory decision making. Fundamentally, it will greatly facilitate the intended use of 30 AOPs for regulatory applications: to help minimize the uncertainty in decision making.
项目摘要 1不良结果途径(AOP)是风险评估工具,可提供透明的机械描述 2压力源导致不良结果。每个AOP描述了在 3个生物层次结构的不同水平(例如分子,细胞,器官和人群)。从暴露于压力源开始 4并进行一系列关键事件,每个AOP都以不利的结果终止 5个有机体或整个种群。尽管AOP在风险评估中的广泛欢迎,但很少有工具可以 6利用它们提供的丰富机械信息,尤其是在自动环境中。缺乏 7以适合定量分析的方式表示AOP的系统框架是一个重要的障碍 8限制其监管应用。我们已经开发了一个独特的系统,即托克斯格(Toxgraph)来解决上述 9个限制。 Toxgraph整合了开放的异质集合的生物学和生化知识 10生物医学本体和公共数据库:庞大的,组织特定的语义知识图(kg)完全策划了 11房子。我们还开发了一个基于深度学习的模型,该模型将非结构化的文本AOP描述映射到特定 这个公斤的12个概念。为了利用这些语义AOP表示,我们已经开发了一个框架 13使我们能够通过生成个人的富集统计数据将AOP转换为假设验证工具 14个事件。这种方法可以通过计算不同级别的富集统计来大大简化下游分析 使用实验数据集的结果,例如差异基因表达实验的结果,粒度的15 16用于量化AOP富集。 17我们提出的研究包括三个具体目标:(1)提高我们的AOP富集统计; (2)增强我们的 18对生物医学知识图概念的AOP事件描述的NLP映射; (3)改进的软件工程 19具有交互式可视化的用户体验。在第一个目标中,我们将改善模型以说明多个 20个实验剂量和时间点同时富集AOP事件。在我们的第二个目标中,我们将改善 21我们的语义相似性模型将任意AOP事件描述映射到受控词汇量。对于这项研究,我们 22将采用最先进的机器学习,NLP和文本挖掘方法。在我们的第三个目标中,我们将发展 23当前命令行工具的Web界面,该工具除了产生相同的富集结果和机理外 24个假设将允许用户在轻巧的交互式3D空间中导航结果。我们设想这是一个强大的 25探索性工具生成机理假设,并具有在时间上显示丰富关系的增加的能力 这个3D空间中的26分。 27我们的总体目标是为查询AOP和 28研究作用机理。毒品将直接有助于新型非动物的发展 29测试策略和简化监管决策。从根本上讲,它将极大地促进 30用于监管应用的AOP:有助于最大程度地减少决策的不确定性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
    $ 24.99万
  • 项目类别:
Microscale Radionuclide S-values for αRPT
αRPT 的微量放射性核素 S 值
  • 批准号:
    10713711
    10713711
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
    $ 24.99万
  • 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
  • 批准号:
    10746348
    10746348
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
    $ 24.99万
  • 项目类别:
Gene-edited liver organoids for predictive hepatotoxicity
用于预测肝毒性的基因编辑肝脏类器官
  • 批准号:
    10758179
    10758179
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
    $ 24.99万
  • 项目类别:
Investigating metabolic responses to high sugar diets and the onset of diabetic phenotypes
研究对高糖饮食的代谢反应和糖尿病表型的发生
  • 批准号:
    10719544
    10719544
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
    $ 24.99万
  • 项目类别: