Research and development of an adverse outcome pathway-focused mechanistic inference tool for 'omics data using semantic knowledge graphs
使用语义知识图研究和开发针对“组学数据”的以不良结果途径为中心的机械推理工具
基本信息
- 批准号:10761637
- 负责人:
- 金额:$ 24.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAssessment toolBiochemicalBiochemical ReactionBiologicalCellsChemicalsCollectionControlled VocabularyDataData SetDecision MakingDevelopmentDiseaseDisparateDoseEventExposure toGene ExpressionGenerationsGenesGoalsHealthIndividualIntuitionKnowledgeLanguageLinkMachine LearningMapsMeasurableMeasurementMethodologyMethodsModelingMolecularNeighborhoodsOnline SystemsOntologyOrganOrganismPathway interactionsPopulationProcessProteinsRegulationRegulatory PathwayReproducibilityResearchResearch PersonnelRisk AssessmentSemanticsSeriesSoftware EngineeringSourceSystemTechniquesTestingTimeTissue-Specific Gene ExpressionTissuesUncertaintyValidationVisualizationadverse outcomebiomedical ontologyconcept mappingdeep learning modeldrug developmentexperienceexperimental studyheuristicsimprovedinformation organizationknowledge graphlight weightnovelprotein complexpublic databaseresearch and developmentresponsesafety assessmentstatisticsstressortext searchingtoolweb appweb interfaceweb-based tool
项目摘要
Project Summary
1 Adverse outcome pathways (AOPs) are risk assessment tools that provide a transparent, mechanistic description of a
2 stressor resulting in an adverse outcome. Each AOP describes a logical sequence of measurable, causally linked events at
3 varying levels of a biological hierarchy (e.g., molecular, cell, organ, and population). Starting with exposure to a stressor,
4 and proceeding through a series of key events, each AOP terminates with an adverse outcome for the health of an
5 organism or population as a whole. Despite the great popularity of AOPs in risk assessment, there are few tools that can
6 exploit the rich mechanistic information they provide, especially quantitatively and in an automated setting. The lack of a
7 systematic framework for representing AOPs in a way that is amenable to quantitative analysis is an important obstacle
8 that limits their regulatory applications. We have developed a unique system, TOXGRAPH, to address the aforementioned
9 limitations. TOXGRAPH integrates biological and biochemical knowledge across a heterogeneous collection of open
10 biomedical ontologies and public databases: a massive, tissue-specific semantic knowledge graph (KG) curated entirely in-
11 house. We have also developed a deep learning-based model that maps unstructured textual AOP descriptions to specific
12 concepts in this KG. To take advantage of these semantic AOP representations, we have developed a framework that
13 allows us to turn AOPs into hypothesis validation tools, by generating enrichment statistics of AOPs an their individual
14 events. This approach can significantly simplify downstream analysis by calculating enrichment statistics at varying levels
15 of granularity, using the results of experimental datasets, such as the results of differential gene expression experiments
16 to quantify AOP enrichment.
17 The research we propose encompasses three specific aims: (1) improve our AOP enrichment statistics; (2) enhance our
18 NLP mapping of AOP event descriptions to biomedical knowledge graph concepts; (3) software engineering for improved
19 user experience with interactive visualizations. In the first aim, we will improve our model to account for multiple
20 experimental doses and time points concurrently for the enrichment of AOP events. In our second aim, we will improve
21 our semantic similarity model to map arbitrary AOP event descriptions to a controlled vocabulary. For this research, we
22 will employ state-of-the-art machine learning, NLP and text mining methodologies. In our third aim, we will develop a
23 web interface to the current command line tool which besides producing the same enrichment results and mechanistic
24 hypotheses will allow users to navigate the results in a lightweight, interactive 3D space. We envision this as a powerful
25 exploratory tool to generate mechanistic hypotheses, with the added ability to show enriched relations across time
26 points in this 3D space.
27 Our overarching goal is to provide an easy, intuitive, and unbiased (data-driven) framework for querying AOPs and
28 researching mechanism of action. TOXGRAPH will directly contribute towards the development of novel non-animal
29 testing strategies and streamline regulatory decision making. Fundamentally, it will greatly facilitate the intended use of
30 AOPs for regulatory applications: to help minimize the uncertainty in decision making.
项目概要
1 不良结果路径 (AOP) 是风险评估工具,可对不良后果提供透明、机械的描述。
2 压力源导致不良结果。每个 AOP 描述了可测量的、因果关联的事件的逻辑序列
生物层次结构的 3 个不同级别(例如分子、细胞、器官和群体)。从暴露于压力源开始,
4 并进行一系列关键事件,每个 AOP 都会以对健康状况不利的结果终止
5 有机体或种群作为一个整体。尽管 AOP 在风险评估中非常受欢迎,但很少有工具可以
6 利用它们提供的丰富机械信息,尤其是定量信息和自动化设置。缺乏一个
7 以适合定量分析的方式表示 AOP 的系统框架是一个重要障碍
8 限制了它们的监管应用。我们开发了一个独特的系统 TOXGRAPH 来解决上述问题
9 限制。 TOXGRAPH 将生物和生化知识整合到异构的开放数据库中
10 个生物医学本体和公共数据库:一个大规模的、特定于组织的语义知识图(KG),完全由
11 房子。我们还开发了一种基于深度学习的模型,将非结构化文本 AOP 描述映射到特定的
本知识库中有 12 个概念。为了利用这些语义 AOP 表示,我们开发了一个框架
13 允许我们通过生成 AOP 及其个体的富集统计数据,将 AOP 转变为假设验证工具
14 个事件。这种方法可以通过计算不同级别的富集统计数据来显着简化下游分析
15的粒度,使用实验数据集的结果,例如差异基因表达实验的结果
16 量化 AOP 富集。
17 我们提出的研究包含三个具体目标:(1) 改进我们的 AOP 丰富统计数据; (2) 增强我们的
18 AOP事件描述到生物医学知识图概念的NLP映射; (3)软件工程改进
19 交互式可视化的用户体验。在第一个目标中,我们将改进我们的模型以考虑多个
同时进行 20 个实验剂量和时间点,以丰富 AOP 事件。在我们的第二个目标中,我们将改进
21 我们的语义相似性模型将任意 AOP 事件描述映射到受控词汇表。对于这项研究,我们
22 将采用最先进的机器学习、NLP 和文本挖掘方法。在我们的第三个目标中,我们将开发一个
23 当前命令行工具的 Web 界面,除了产生相同的富集结果和机制之外
24 种假设将允许用户在轻量级、交互式 3D 空间中导航结果。我们认为这是一个强大的
25 个探索性工具,用于生成机械假设,并具有显示丰富的跨时间关系的能力
这个 3D 空间中有 26 个点。
27 我们的首要目标是提供一个简单、直观且公正(数据驱动)的框架来查询 AOP 和
28 研究作用机制。 TOXGRAPH 将直接促进新型非动物的开发
29 种测试策略并简化监管决策。从根本上说,它将极大地促进预期用途
30 个适用于监管应用的 AOP:帮助最大限度地减少决策中的不确定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruchir Shah其他文献
Ruchir Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Gene-edited liver organoids for predictive hepatotoxicity
用于预测肝毒性的基因编辑肝脏类器官
- 批准号:
10758179 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Investigating metabolic responses to high sugar diets and the onset of diabetic phenotypes
研究对高糖饮食的代谢反应和糖尿病表型的发生
- 批准号:
10719544 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别: