Quivers and Bipartite Graphs: Physics and Mathematics

箭袋和二分图:物理和数学

基本信息

  • 批准号:
    1636087
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-15 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

This award supports the travel of US participants, in particular students and early career researchers, to the conference "Quivers and Bipartite Graphs: Physics and Mathematics" to be held at the London Global Gateway facility of the University of Notre Dame in London, UK, on May 2-6, 2016. Mathematics has built a strong foundation for solving various problems in physics. In recent years, a number of exciting advances in high energy physics have been developed by using the newly discovered mathematical objects called cluster algebras. This workshop will bring together both leading experts and young researchers working on applications of mathematical theory of quivers and bipartite graphs to problems in high energy physics. The NSF funds will be used to reimburse travel expenses for graduate students, post-doctoral researchers, young faculty members, members of under-represented groups, and researchers without federal support.Cluster algebras have been uniquely suited for simplifying and carrying out massive calculations (e.g., related to scattering amplitudes), and formalizing and unifying key observations previously made by theoretical physicists. Since this new and dynamic inter-disciplinary area of research touches upon a wide range of topics including gauge theory, string theory, number theory, algebraic geometry, integrable systems, and representation theory, the funding will be used to help mathematicians from diverse research areas to learn, interact, and collaborate with world experts in mathematics and high energy physics. One hallmark of the workshop will be the increased cross-fertilization between the mathematical sciences and other areas of science, particularly physics. Additional information is available at the conference web site, http://www3.nd.edu/~conf/quivers/
该奖项支持美国参与者,特别是学生和早期职业研究人员前往参加将在英国伦敦圣母大学伦敦全球网关设施举行的“箭袋和二分图:物理和数学”会议, 2016年5月2日至6日。数学为解决物理中的各种问题奠定了坚实的基础。近年来,通过使用新发现的称为簇代数的数学对象,高能物理领域取得了许多令人兴奋的进展。 本次研讨会将汇集主要专家和年轻研究人员,致力于将箭袋和二分图数学理论应用于高能物理问题。 NSF 资金将用于报销研究生、博士后研究人员、年轻教员、代表性不足群体的成员以及没有联邦支持的研究人员的旅费。簇代数特别适合简化和进行大规模计算(例如,与散射幅度有关),以及形式化和统一理论物理学家先前所做的关键观察。由于这个新的、充满活力的跨学科研究领域涉及广泛的主题,包括规范理论、弦理论、数论、代数几何、可积系统和表示论,因此这笔资金将用于帮助来自不同研究领域的数学家与数学和高能物理领域的世界专家学习、互动和合作。该研讨会的标志之一是数学科学与其他科学领域(特别是物理学)之间的交叉融合。更多信息请访问会议网站:http://www3.nd.edu/~conf/quivers/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Gekhtman其他文献

Associahedra as moment polytopes
作为矩多面体的联面体
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Gekhtman;Hugh Thomas
  • 通讯作者:
    Hugh Thomas
Remarkable growth in matter radii of Ca isotopes across neutron magic number N = 28 via interaction cross section σI measurements
通过相互作用截面 σI 测量,跨中子幻数 N = 28 的 Ca 同位素物质半径显着增长
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Gekhtman;Tomoki Nakanishi;Dylan Rupel;M.Tanaka
  • 通讯作者:
    M.Tanaka

Michael Gekhtman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Gekhtman', 18)}}的其他基金

Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100785
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Poisson Geometry Conference
泊松几何会议
  • 批准号:
    1711110
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Cluster Structures of Geometric Type
合作研究:几何类型的广义簇结构
  • 批准号:
    1702054
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: CLUSTER STRUCTURES ON POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY
合作研究:泊松李群的簇结构和完全可积性
  • 批准号:
    1362801
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cluster Algebras Approach to Poisson-Lie Groups and Higher Genus Directed Networks
协作研究:泊松李群和更高属有向网络的簇代数方法
  • 批准号:
    1101462
  • 财政年份:
    2011
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Program on Quantization
量化计划
  • 批准号:
    1114152
  • 财政年份:
    2011
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Cluster Algebras, Canonical Bases and Nets on Surfaces of Higher Genus
合作研究:簇代数、规范基和更高属面上的网络
  • 批准号:
    0801204
  • 财政年份:
    2008
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Hurwitz Numbers, Teichmuller Spaces, Schubert Calculus, and Cluster Algebras
合作研究:Hurwitz 数、Teichmuller 空间、舒伯特微积分和簇代数
  • 批准号:
    0400484
  • 财政年份:
    2004
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant

相似国自然基金

零膨胀数据的两部模型及在贷款违约风险中的应用
  • 批准号:
    71601076
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
混合垄断下道路收费和通行能力最优决策模型
  • 批准号:
    71301112
  • 批准年份:
    2013
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Tree-dependent bipartite graphs as a model for directed acyclic graphs.
树相关二部图作为有向无环图的模型。
  • 批准号:
    516956-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Postdoctoral Fellowships
Cohesive Subgraph Discovery on Big Bipartite Graphs
大二分图上的内聚子图发现
  • 批准号:
    DP200101116
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Projects
Tree-dependent bipartite graphs as a model for directed acyclic graphs.
树相关二分图作为有向无环图的模型。
  • 批准号:
    516956-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Postdoctoral Fellowships
Statistical mechanical study on relaxation of the bipartite constraint in community detection of graphs
图社区检测中二分约束松弛的统计力学研究
  • 批准号:
    18K18127
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tree-dependent bipartite graphs as a model for directed acyclic graphs.
树相关二分图作为有向无环图的模型。
  • 批准号:
    516956-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了