Collaborative Research: Cluster Algebras, Canonical Bases and Nets on Surfaces of Higher Genus

合作研究:簇代数、规范基和更高属面上的网络

基本信息

  • 批准号:
    0801204
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-15 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

This project explores links between classical combinatorics, modern theory of Teichmueller spaces, real algebraic geometry and total positivity, and the rapidly developing theory of cluster algebras. In particlular, PIs utilize the link between decorated Teichmueller spaces and the algebra of geodesics on the one hand and the theory of cluster algebras on the other hand to investigate the structure of the dual canonical basis of a cluster algebra. Furthermore, they use cluster algebra point of view to study directed nets on surfaces and describe compatible Poisson-Lie structures for nets and solutions of corresponding inverse problems and to study associated integrable hierarchies. The latter will be applied to investigate new relations between double Hurwitz numbers of coverings of the sphere by higher genus curves and, on the other hand, to analyze a new two- and multi-matrix models and associated biorthogonal polynomials and apply them to problems of enumeration of bicolored embedded graphs.Space discretization using networks on surfaces is an important in the theory of random processes, in mathematical physics, including 2D gravity, the theory of electric potential and especially theory of electrical networks and in other fields.Combinatorial properties of surface networks capture crucial features of complex mathematical and physical structures.Recently it was observed that surface networks also exhibit many features that are typical for cluster algebra structures.Introduced only a few years ago by Fomin and Zelevinsky, the cluster algebra formalism is proved to be widely applicable in investigation of algebraic and geometric objects with symmetries often associated with important physical systems. Interplay between the two concepts will be instrumental in the study of combinatorial quantities and geometric phenomena of physical relevance and classical and quantum exactly solvable models.
该项目探讨了古典组合学,Teichmueller空间的现代理论,实际代数几何学和总阳性以及群集代数的快速发展理论之间的联系。在特定的情况下,PIS一方面利用了装饰的Teichmueller空间与大地测量代数之间的联系,另一方面,群集代数理论来研究集群代数的双重规范基础的结构。此外,他们使用群集代数的观点来研究表面上的定向网,并描述相应的逆问题的网和解决方案的兼容泊松结构,并研究相关的可集成层次结构。后者将应用于通过较高的属曲线来调查球体覆盖率的新关系,另一方面,分析了新的两种和多矩阵模型以及相关的生物双歧式多项式,并将其应用于双色嵌入式图的枚举。在表面上使用网络的空间离散化在随机过程的理论中,在数学物理学的理论中很重要,包括2D重力,电势理论,电位理论,尤其是电网和其他领域的理论。网络捕获了复杂数学和物理结构的关键特征。很明显,表面网络还表现出许多对于群集代数结构而言是典型的特征。几年前,Fomin和Zelevinsky仅引入了群集的形式,被证明是广泛的。适用于研究具有与重要物理系统相关的对称性的代数和几何对象。这两个概念之间的相互作用将在组合数量和物理相关性以及经典和量子恰好可解决模型的几何现象的研究中发挥作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Gekhtman其他文献

Associahedra as moment polytopes
作为矩多面体的联面体
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Gekhtman;Hugh Thomas
  • 通讯作者:
    Hugh Thomas
Remarkable growth in matter radii of Ca isotopes across neutron magic number N = 28 via interaction cross section σI measurements
通过相互作用截面 σI 测量,跨中子幻数 N = 28 的 Ca 同位素物质半径显着增长
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Gekhtman;Tomoki Nakanishi;Dylan Rupel;M.Tanaka
  • 通讯作者:
    M.Tanaka

Michael Gekhtman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Gekhtman', 18)}}的其他基金

Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100785
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Poisson Geometry Conference
泊松几何会议
  • 批准号:
    1711110
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Cluster Structures of Geometric Type
合作研究:几何类型的广义簇结构
  • 批准号:
    1702054
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Quivers and Bipartite Graphs: Physics and Mathematics
箭袋和二分图:物理和数学
  • 批准号:
    1636087
  • 财政年份:
    2016
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: CLUSTER STRUCTURES ON POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY
合作研究:泊松李群的簇结构和完全可积性
  • 批准号:
    1362801
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cluster Algebras Approach to Poisson-Lie Groups and Higher Genus Directed Networks
协作研究:泊松李群和更高属有向网络的簇代数方法
  • 批准号:
    1101462
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Program on Quantization
量化计划
  • 批准号:
    1114152
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Hurwitz Numbers, Teichmuller Spaces, Schubert Calculus, and Cluster Algebras
合作研究:Hurwitz 数、Teichmuller 空间、舒伯特微积分和簇代数
  • 批准号:
    0400484
  • 财政年份:
    2004
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似国自然基金

过渡金属单原子/亚纳米团簇复合催化剂的构筑及其锂硫电池性能研究
  • 批准号:
    52302261
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高压下金纳米团簇的物性调控与发光机理研究
  • 批准号:
    12304262
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
辐照条件下低铜RPV钢中溶质团簇形成与演化机理研究
  • 批准号:
    12375258
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
镧系硼基团簇中4f电子的键合特性与镧系元素反常价态的机理研究
  • 批准号:
    12304296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
过冷Ga基液态金属团簇对称性与物性不连续演变的构效关系研究
  • 批准号:
    52301207
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Assessing risk for firearm injury and attitudes about new gun violence prevention laws in Michigan to enhance policy implementation
评估密歇根州枪伤风险和对新枪支暴力预防法的态度,以加强政策实施
  • 批准号:
    10811214
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Collaborative Care Model for Perinatal Depression Support Services -- Population-Level Equity-Centered Systems Change (COMPASS-PLUS): A Hybrid Type 2 Cluster Randomized Trial
围产期抑郁症支持服务协作护理模式——以人口水平公平为中心的系统变革 (COMPASS-PLUS):混合 2 型集群随机试验
  • 批准号:
    10835287
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Functional genomics of hypothetical genes in Gram-positive bacteria
革兰氏阳性菌假设基因的功能基因组学
  • 批准号:
    10790885
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
  • 批准号:
    2216923
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Prevention of Perinatal Depression in Birthing People with a History of Adverse Childhood Experiences: A Type 2 Effectiveness Implementation Trial
预防有童年不良经历史的出生者的围产期抑郁症:2 类有效性实施试验
  • 批准号:
    10523685
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了