COLLABORATIVE RESEARCH: CLUSTER STRUCTURES ON POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY

合作研究:泊松李群的簇结构和完全可积性

基本信息

  • 批准号:
    1362801
  • 负责人:
  • 金额:
    $ 20.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

This project lies in Algebra and focuses on cluster algebras and Poisson-Lie groups. Since the invention of cluster algebras by Fomin and Zelevinsky in 2001, the mathematical community witnessed an explosion of interest in the subject due to the deep connections that were revealed between cluster algebras and a variety of branches of mathematics and theoretical physics ranging from quiver representations and algebraic geometry to string theory and statistical physics. The PIs will build upon their previous collaborations to continue a systematic study of multiple cluster structures in coordinate rings of Poisson-Lie groups and a number of other varieties of importance in algebraic geometry, representation theory and mathematical physics and study an interaction between corresponding cluster algebras. The proposed research is linked to the development of undergraduate and graduate courses and research projects. Synergistic activities are planned with the goal to promote inter-institutional and inter-departmental cooperation, to attract graduate students from underrepresented groups and with diverse educational backgrounds, and, through community outreach, to expose high school students to mathematical research. The PIs will continue their work on applications of Poisson Geometry to the theory of cluster algebras. The main goals of the project include construction and study of (i) exotic cluster structures on simple Lie groups compatible with Poisson-Lie brackets described by the Belavin-Drinfeld classification; (ii) generalized cluster structures on the Drinfeld double and the Poisson-Lie dual of a simple Poisson-Lie group; (iii) combinatorics and inverse problems for higher genus nets dual to quivers arising in cluster structures above; (iv) discrete integrable systems arising as sequences of cluster transformations and elementary transformations of higher genus networks; (v) continuous limits for directed networks with applications to moduli spaces of flat connections.
该项目在于代数,专注于群集代数和泊松群组。自2001年Fomin和Zelevinsky发明集群代数以来,数学社区目睹了对主题的兴趣,这是由于群集代数之间的深厚联系和数学分支之间的深厚联系,以及各种分支。弦理论和统计物理学的代数几何形状。 PI将基于他们以前的合作,以继续对泊松组的坐标环的多个集群结构进行系统研究,以及代数几何学,代表性理论和数学物理学中的许多其他重要性,并研究相应的群集代数代数之间的相互作用。拟议的研究与本科和研究生课程和研究项目的发展有关。计划进行协同活动,目的是促进机构间和部门间合作,吸引来自代表性不足的群体,具有多种教育背景的研究生,并通过社区外展使高中生接触数学研究。 PI将继续对泊松几何形状应用于集群代数理论的应用。该项目的主要目标包括(i)与Belavin-Drinfeld分类所描述的Poisson-Lie括号兼容的简单谎言组上的(i)奇异的集群结构的构建和研究; (ii)Drinfeld Double上的广义集群结构和一个简单的泊松型组的泊松式二重奏; (iii)在上面的群集结构中引起的箭射的高属网络的组合和反问题; (iv)作为集群变换的序列和较高属网络的基本变换而产生的离散集成系统; (v)针对有向网络的连续限制,其应用程序可用于平坦连接的模量空间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Gekhtman其他文献

Associahedra as moment polytopes
作为矩多面体的联面体
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Gekhtman;Hugh Thomas
  • 通讯作者:
    Hugh Thomas
Remarkable growth in matter radii of Ca isotopes across neutron magic number N = 28 via interaction cross section σI measurements
通过相互作用截面 σI 测量,跨中子幻数 N = 28 的 Ca 同位素物质半径显着增长
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Gekhtman;Tomoki Nakanishi;Dylan Rupel;M.Tanaka
  • 通讯作者:
    M.Tanaka

Michael Gekhtman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Gekhtman', 18)}}的其他基金

Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100785
  • 财政年份:
    2021
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant
Poisson Geometry Conference
泊松几何会议
  • 批准号:
    1711110
  • 财政年份:
    2017
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Cluster Structures of Geometric Type
合作研究:几何类型的广义簇结构
  • 批准号:
    1702054
  • 财政年份:
    2017
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Continuing Grant
Quivers and Bipartite Graphs: Physics and Mathematics
箭袋和二分图:物理和数学
  • 批准号:
    1636087
  • 财政年份:
    2016
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Cluster Algebras Approach to Poisson-Lie Groups and Higher Genus Directed Networks
协作研究:泊松李群和更高属有向网络的簇代数方法
  • 批准号:
    1101462
  • 财政年份:
    2011
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant
Program on Quantization
量化计划
  • 批准号:
    1114152
  • 财政年份:
    2011
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Cluster Algebras, Canonical Bases and Nets on Surfaces of Higher Genus
合作研究:簇代数、规范基和更高属面上的网络
  • 批准号:
    0801204
  • 财政年份:
    2008
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Hurwitz Numbers, Teichmuller Spaces, Schubert Calculus, and Cluster Algebras
合作研究:Hurwitz 数、Teichmuller 空间、舒伯特微积分和簇代数
  • 批准号:
    0400484
  • 财政年份:
    2004
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant

相似国自然基金

过渡金属单原子/亚纳米团簇复合催化剂的构筑及其锂硫电池性能研究
  • 批准号:
    52302261
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高压下金纳米团簇的物性调控与发光机理研究
  • 批准号:
    12304262
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
辐照条件下低铜RPV钢中溶质团簇形成与演化机理研究
  • 批准号:
    12375258
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
镧系硼基团簇中4f电子的键合特性与镧系元素反常价态的机理研究
  • 批准号:
    12304296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
过冷Ga基液态金属团簇对称性与物性不连续演变的构效关系研究
  • 批准号:
    52301207
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Assessing risk for firearm injury and attitudes about new gun violence prevention laws in Michigan to enhance policy implementation
评估密歇根州枪伤风险和对新枪支暴力预防法的态度,以加强政策实施
  • 批准号:
    10811214
  • 财政年份:
    2023
  • 资助金额:
    $ 20.97万
  • 项目类别:
Collaborative Care Model for Perinatal Depression Support Services -- Population-Level Equity-Centered Systems Change (COMPASS-PLUS): A Hybrid Type 2 Cluster Randomized Trial
围产期抑郁症支持服务协作护理模式——以人口水平公平为中心的系统变革 (COMPASS-PLUS):混合 2 型集群随机试验
  • 批准号:
    10835287
  • 财政年份:
    2023
  • 资助金额:
    $ 20.97万
  • 项目类别:
Functional genomics of hypothetical genes in Gram-positive bacteria
革兰氏阳性菌假设基因的功能基因组学
  • 批准号:
    10790885
  • 财政年份:
    2023
  • 资助金额:
    $ 20.97万
  • 项目类别:
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
  • 批准号:
    2216923
  • 财政年份:
    2022
  • 资助金额:
    $ 20.97万
  • 项目类别:
    Standard Grant
Prevention of Perinatal Depression in Birthing People with a History of Adverse Childhood Experiences: A Type 2 Effectiveness Implementation Trial
预防有童年不良经历史的出生者的围产期抑郁症:2 类有效性实施试验
  • 批准号:
    10523685
  • 财政年份:
    2022
  • 资助金额:
    $ 20.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了