CIF: Small: Collaborative Research: Geometrical and Statistical Modeling of Space-Time symmetries for Human Action Analysis and Retraining
CIF:小型:协作研究:用于人类行为分析和再训练的时空对称性的几何和统计建模
基本信息
- 批准号:1617999
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This interdisciplinary research aims to advance current understanding and utilization of space-time symmetries in analyzing human movements, using fundamental tools from engineering, geometry, and statistics. Broader applications of this research include home or workplace-based self-reflection of daily activities, promotion of higher efficiency of human movements, and long-term management and/or prevention of movement disorders. While the need for comprehensively and statistically analyzing human kinematics is well chronicled, the current measures are often limited to simplistic quantities such as speeds and acceleration profiles of individual limbs. This project will focus on both spatial and temporal symmetries of limb movements, full body shapes, and complete dynamical actions, for assessment of movements ranging from daily activities to physiotherapeutic exercises. Symmetry has been used in the past, in clinical biomechanics, but in a limited way. This project will develop a comprehensive theory, built on fundamental tools from differential geometry and statistical analysis of geometric objects, to represent, quantify, analyze, and classify motions according to their level of symmetry. The specific forms of symmetry will include spatial reflection, temporal reflection, and space-time glide symmetries. This formulation will incorporate data from various sensing modalities and features, including point trajectories and stick figures from motion capture systems, to shape silhouettes and dynamic textures obtained from video sensors. The project outcomes also include the development of a real-time media-system for movement re-training and reflection of common actions, such as sitting to standing (STS). The proposal brings together a strong and inter-disciplinary team of researchers with expertise in computer vision and action recognition (Turaga), differential geometry and statistics (Srivastava), and somatics and kinesiology (Coleman).
这项跨学科研究旨在利用工程学、几何学和统计学的基本工具,促进当前对时空对称性的理解和利用,以分析人类运动。这项研究的更广泛应用包括基于家庭或工作场所的日常活动自我反思、提高人体运动效率以及运动障碍的长期管理和/或预防。虽然对人体运动学进行全面和统计分析的需求已被详细记录,但当前的测量通常仅限于简单的数量,例如各个肢体的速度和加速度曲线。该项目将重点关注肢体运动的空间和时间对称性、全身形状和完整的动态动作,以评估从日常活动到理疗练习的运动。对称性过去曾用于临床生物力学,但用途有限。该项目将开发一种基于微分几何和几何对象统计分析的基本工具的综合理论,根据运动的对称程度来表示、量化、分析和分类。对称性的具体形式包括空间反射、时间反射和时空滑移对称性。该公式将整合来自各种传感模式和特征的数据,包括来自运动捕捉系统的点轨迹和简笔画,以塑造从视频传感器获得的轮廓和动态纹理。该项目成果还包括开发实时媒体系统,用于运动再训练和常见动作的反映,例如从坐到站(STS)。该提案汇集了一支强大的跨学科研究人员团队,他们拥有计算机视觉和动作识别(Turaga)、微分几何和统计学(Srivastava)以及躯体学和运动机能学(Coleman)方面的专业知识。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temporal Alignment Improves Feature Quality: An Experiment on Activity Recognition with Accelerometer Data
- DOI:10.1109/cvprw.2018.00075
- 发表时间:2018-06-01
- 期刊:
- 影响因子:0
- 作者:Hongjun Choi;Qiao Wang;M. Toledo;P. Turaga;M. Buman;Anuj Srivastava
- 通讯作者:Anuj Srivastava
Measuring Glide-Reflection Symmetry in Human Movements Using Elastic Shape Analysis
使用弹性形状分析测量人体运动中的滑行反射对称性
- DOI:10.1109/cvprw.2017.100
- 发表时间:2017-07
- 期刊:
- 影响因子:0
- 作者:Wang, Qiao;Potaraju, Chaitanya;Turaga, Pavan
- 通讯作者:Turaga, Pavan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavan Turaga其他文献
Pattern Recognition
模式识别
- DOI:
10.1007/978-3-642-32717-9 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Pascal Francis;Edwin Hancock;Robert S. Ledley†;C. Y. Suen;Zoran Duric;A. K. Jain;Dacheng Tao;Ognjen Ar;jelovíc;jelovíc;Adam Krzyzak;Longin Jan;Latecki;Cheng;P. Radeva;W. Scheirer;R. Wilson;Majid Ahmadi;Saket An;George Azzopardi;R. V. Babu;Song Bai;Xiang Bai;Vineeth N. Balasubramanian;Christian Bauckhage;Esube Bekele;P. Bestagini;Horst Bischof;Ryoma Bise;Nathaniel Blanchard;T. Bourlai;T. Breckon;Catherine Breslin;Luc Brun;Hyeran Byun;Shaun Canavan;Chee Seng;Chan;Hong Chang;S. Chatzis;Chao Chen;Chi H. Chen;Dongdong Chen;Shengyong Chen;Heng;Jian Cheng;M. Cheriet;Vincent Christlein;Georgina Cosma;J. Cousty;Marco Cristani;Adam M Czajka;N. Damer;A. Dantcheva;Swagatam Das;M. De Marsico;A. D. Bue;Bo Du;Jenny Du;Mahmoud El;Ale;re Falcão;re;G. Farinella;Francesc J. Ferri;C. Fookes;A. Fornés;Victor Fragoso;Éric Granger;Marcin Grzegorzek;Manuel Günther;Hu Han;Jungong Han;Gao Huang;Helen Huang;Kaiqi Huang;Kaizhu Huang;Qinghua Huang;Atsushi Imiya;Brijnesh Jain;Robert Jenssen;Ian H. Jermyn;Rongrong Ji;Qi Jia;Pedro Real Jurado;Srikrishna Karanam;Tae;N. Kiryati;A. Kuijper;Vitaliy Kurlin;Louisa Lam;Ed Lawson;Ying Li;Zhifeng Li;Jessica Lin;Kang Liu;Li Liu;Mingxia Liu;Risheng Liu;Tencent Shenzhen China Wei Liu;J. Lladós;M. Loog;Brian Lovell;Bai Lu;Huimin Lu;Jiwen Lu;Shijian Lu;Yue Lu;A. Lumini;F. Marcolin;José Francisco Martínez;Takeshi Masuda;Scott McCloskey;Chris C. McCool;Tao Mei;Ajmal Mian;M. Milanova;G. Montavon;Daniel Moreira;Martin Mundt;Tu Darmstadt;Yi Lu Murphey;Karthik N;akumar;akumar;L. Nanni;Feiping Nie;W. Ouyang;J. P. Papa;Vishal Patel;D. Pedronette;Marcello Pelillo;Tuan Pham;Guo;H. Rangwala;A. R. Rao;Eraldo Ribeiro;Elisa Ricci;Kaspar Riesen;A. Robles;Luca Rossi;A. Salah;Wojciech Samek;Shin'ichi Satoh;P. Sattigeri;Shishir K. Shah;Heng Tao;Shen;Jialie Shen;Z. Shi;Ikuko Shimizu;A. Shokouf;eh;eh;William A. P. Smith;Enrique Sucar;Kyoko Sudo;Yusuke Sugano;Ponnuthurai Nagaratnam;Suganthan;Qianru Sun;Shiliang Sun;Kenji Suzuki;Antoine Tabbone;Mohammad Tanveer;Ricardo S Torres;A. Torsello;Pavan Turaga;M. Vatsa;Mario Vento;Enrico Vezzetti;Nicole Vincent;Liang Wang;Qi Wang;Shanshan Wang;Xinchao Wang;Xinggang Wang;Jianxin Wu;Qi Wu;Yihong Wu;Junchi Yan;Herb Yang;Jian Yang;Jane Jia You;Jun Yu;Shiqi Yu;Yuan Yuan;Pong Chi;Yuen;R. Zanibbi;Kun Zhang;Xu;Ya Zhang;Zhao Z. Zhang;Zhihong Zhang;Guoying Zhao;Huiyu H. Zhou;Jun Zhou;Luping Zhou;Xiaoxiang Zhu;B. Zitová - 通讯作者:
B. Zitová
Pattern Recognition
模式识别
- DOI:
10.1007/978-1-4613-4154-3 - 发表时间:
1978-09-14 - 期刊:
- 影响因子:0
- 作者:
Pascal Francis;Edwin Hancock;Robert S. Ledley†;C. Y. Suen;Zoran Duric;A. K. Jain;Dacheng Tao;Ognjen Ar;jelovíc;jelovíc;Adam Krzyzak;Longin Jan;Latecki;Cheng;P. Radeva;W. Scheirer;R. Wilson;Majid Ahmadi;Saket An;George Azzopardi;R. V. Babu;Song Bai;Xiang Bai;Vineeth N. Balasubramanian;Christian Bauckhage;Esube Bekele;P. Bestagini;Horst Bischof;Ryoma Bise;Nathaniel Blanchard;T. Bourlai;T. Breckon;Catherine Breslin;Luc Brun;Hyeran Byun;Shaun Canavan;Chee Seng;Chan;Hong Chang;S. Chatzis;Chao Chen;Chi H. Chen;Dongdong Chen;Shengyong Chen;Heng;Jian Cheng;Mohamed Cheriet;Vincent Christlein;Georgina Cosma;J. Cousty;M. Cristani;Adam M Czajka;N. Damer;A. Dantcheva;Swagatam Das;M. De Marsico;A. D. Bue;Bo Du;Jenny Du;Mahmoud El;Ale;re Falcão;re;G. Farinella;Francesc J. Ferri;C. Fookes;A. Fornés;Victor Fragoso;Éric Granger;Marcin Grzegorzek;Manuel Günther;Hu Han;Jungong Han;Gao Huang;Helen Huang;Kaiqi Huang;Kaizhu Huang;Qinghua Huang;Atsushi Imiya;Brijnesh Jain;Robert Jenssen;Ian H. Jermyn;Rongrong Ji;Qi Jia;Pedro Real Jurado;Srikrishna Karanam;Tae;N. Kiryati;A. Kuijper;Vitaliy Kurlin;Louisa Lam;Ed Lawson;Ying Li;Zhifeng Li;Jessica Lin;Kang Liu;Li Liu;Mingxia Liu;Risheng Liu;Tencent Shenzhen China Wei Liu;J. Lladós;M. Loog;Brian Lovell;Bai Lu;Huimin Lu;Jiwen Lu;Shijian Lu;Yue Lu;A. Lumini;F. Marcolin;José Francisco Martínez;Takeshi Masuda;Scott McCloskey;Chris C. McCool;Tao Mei;Ajmal Mian;M. Milanova;G. Montavon;Daniel Moreira;Martin Mundt;Tu Darmstadt;Yi Lu Murphey;K. N;akumar;akumar;L. Nanni;Feiping Nie;W. Ouyang;J. P. Papa;Vishal Patel;D. Pedronette;Marcello Pelillo;Tuan Pham;Guo;H. Rangwala;A. R. Rao;Eraldo Ribeiro;Elisa Ricci;Kaspar Riesen;A. Robles;Luca Rossi;A. Salah;Wojciech Samek;Shin'ichi Satoh;P. Sattigeri;Shishir K. Shah;Heng Tao;Shen;Jialie Shen;Z. Shi;Ikuko Shimizu;A. Shokouf;eh;eh;William A. P. Smith;Enrique Sucar;Kyoko Sudo;Yusuke Sugano;Ponnuthurai Nagaratnam;Suganthan;Qianru Sun;Shiliang Sun;Kenji Suzuki;Antoine Tabbone;Mohammad Tanveer;Ricardo S Torres;A. Torsello;Pavan Turaga;M. Vatsa;Mario Vento;Enrico Vezzetti;Nicole Vincent;Liang Wang;Qi Wang;Shanshan Wang;Xinchao Wang;Xinggang Wang;Jianxin Wu;Qi Wu;Yihong Wu;Junchi Yan;Herb Yang;Jian Yang;Jane Jia You;Jun Yu;Shiqi Yu;Yuan Yuan;Pong Chi;Yuen;R. Zanibbi;Kun Zhang;Xu;Ya Zhang;Zhao Z. Zhang;Zhihong Zhang;Guoying Zhao;Huiyu H. Zhou;Jun Zhou;Luping Zhou;Xiaoxiang Zhu;B. Zitová - 通讯作者:
B. Zitová
A Hierarchical Bayesian Model for Cyber-Human Assessment of Rehabilitation Movement
康复运动网络人类评估的分层贝叶斯模型
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Tamim Ahmed;T. Rikakis;Setor Zilevu;Aisling Kelliher;Kowshik Thopalli;Pavan Turaga;Steven L. Wolf - 通讯作者:
Steven L. Wolf
Constrained Adaptive Distillation Based on Topological Persistence for Wearable Sensor Data
基于拓扑持久性的可穿戴传感器数据约束自适应蒸馏
- DOI:
10.1109/tim.2023.3329818 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:5.6
- 作者:
Eunyeong Jeon;Hongjun Choi;Ankita Shukla;Yuan Wang;M. Buman;Pavan Turaga - 通讯作者:
Pavan Turaga
Microstructure
微观结构
- DOI:
10.1201/9781420041910.ch12 - 发表时间:
1984-12-01 - 期刊:
- 影响因子:0
- 作者:
Hamidreza TORBATI;S. Niverty;Rajhans Singh;D. Barboza;Vincent de Andrade;Pavan Turaga;Nikhiles - 通讯作者:
Nikhiles
Pavan Turaga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavan Turaga', 18)}}的其他基金
RI: Small: Integrating physics, data, and art-based insights for controllable generative models
RI:小型:集成物理、数据和基于艺术的见解以实现可控生成模型
- 批准号:
2323086 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
PIPP Phase I: Computational Foundations for Bio-social Modeling of Unseen Pandemics
PIPP 第一阶段:看不见的流行病生物社会建模的计算基础
- 批准号:
2200161 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
FW-HTF-P: The Future of Workplace Wellness
FW-HTF-P:工作场所健康的未来
- 批准号:
2026512 - 财政年份:2020
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
CAREER: Role of geometry in dynamical modeling of human movement: Applications to activity quality assessment across Euclidean, non-Euclidean, and function spaces
职业:几何在人体运动动态建模中的作用:在欧几里德、非欧和功能空间的活动质量评估中的应用
- 批准号:
1452163 - 财政年份:2015
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Geometry-aware and data-adaptive signal processing for resource constrained activity analysis
CIF:小型:协作研究:用于资源受限活动分析的几何感知和数据自适应信号处理
- 批准号:
1320267 - 财政年份:2013
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
相似国自然基金
ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
- 批准号:82301557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
- 批准号:82372852
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
- 批准号:82305399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
- 批准号:82373364
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
- 批准号:
2334898 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant