RI: Small: Integrating physics, data, and art-based insights for controllable generative models
RI:小型:集成物理、数据和基于艺术的见解以实现可控生成模型
基本信息
- 批准号:2323086
- 负责人:
- 金额:$ 59.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Generative models refer to a large class of machine learning techniques that can generate user-specified media – including images, video, 3D environments, and text – from inputs such as text prompts, sketches, or other user provide images. New generative models are rapidly being developed and are seen as increasingly important in many different applications such as in chatbots and automation. Current generative models are characterized by extremely large models trained on web-scale data, but on closer inspection are found to be unreliable in critically important contexts. This project focuses on generative models for visual media, where current generative models will be advanced by leveraging prior knowledge about how visual features can be described by physical and statistical laws. The sources of knowledge that will be leveraged include physics-based knowledge, insights from traditional content creation techniques, and advances in modeling latent-spaces using novel geometric methods. The anticipated benefits include more robust models, smaller scale models, and more interpretable and modular models. This research systematically investigating the basics of generative-adversarial networks. The first task considers the role of the input probability distribution from which samples are drawn, generalizing to non-parametric distributions tuned to reduce distribution mismatch under sample mixing. The second task involves architectural novelty in terms of detail layering, where synthesis is broken into a series of simpler architectures. The third task focuses on developing reduced parameter discriminator models, using orthogonality-type constraints as a proxy for physical variables like lighting, texture, and deformation. The fourth task focuses on developing shape-aware architectures, using learnable polynomial basis functions to represent shape more directly. Applications for these methods include augmenting training-sets to create trustworthy machine learning models in contexts such as manufacturing and health, where it is difficult to gather large training sets. Curricular innovations include creating access to these approaches for non-STEM students, in a class titled Machine Learning for Media Arts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生成模型是指一大类机器学习技术,可以根据文本提示、草图或其他用户提供的图像等输入生成用户指定的媒体(包括图像、视频、3D 环境和文本)。正在开发中,并且在聊天机器人和自动化等许多不同的应用中被认为越来越重要。当前的生成模型的特点是在网络规模数据上训练的非常大的模型,但仔细检查发现在极其重要的环境中是不可靠的。项目重点视觉媒体的生成模型,其中当前的生成模型将通过利用有关如何通过物理和统计定律描述视觉特征的先验知识来改进。将利用的知识来源包括基于物理的知识、传统内容创建的见解。技术以及使用新颖的几何方法建模潜在空间的进展。预期的好处包括更稳健的模型、更小的规模模型以及更可解释和模块化的模型。第一项任务考虑了生成对抗网络的基础知识。输入概率的作用第二个任务涉及细节分层方面的架构新颖性,其中合成被分解为一系列更简单的架构。开发简化参数鉴别器模型,使用正交类型约束作为物理变量(如光照、纹理和变形)的代理,第四项任务重点是开发形状感知架构,使用可学习的多项式基函数更直接地表示形状。这些方法包括增加训练集,以在制造和健康等环境中创建值得信赖的机器学习模型,在这些环境中很难收集大型训练集。课程创新包括为非 STEM 学生创建访问这些方法的机会,课程名称为“STEM”。媒体艺术机器学习。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavan Turaga其他文献
Pattern Recognition
模式识别
- DOI:
10.1007/978-3-642-32717-9 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Pascal Francis;Edwin Hancock;Robert S. Ledley†;C. Y. Suen;Zoran Duric;A. K. Jain;Dacheng Tao;Ognjen Ar;jelovíc;jelovíc;Adam Krzyzak;Longin Jan;Latecki;Cheng;P. Radeva;W. Scheirer;R. Wilson;Majid Ahmadi;Saket An;George Azzopardi;R. V. Babu;Song Bai;Xiang Bai;Vineeth N. Balasubramanian;Christian Bauckhage;Esube Bekele;P. Bestagini;Horst Bischof;Ryoma Bise;Nathaniel Blanchard;T. Bourlai;T. Breckon;Catherine Breslin;Luc Brun;Hyeran Byun;Shaun Canavan;Chee Seng;Chan;Hong Chang;S. Chatzis;Chao Chen;Chi H. Chen;Dongdong Chen;Shengyong Chen;Heng;Jian Cheng;M. Cheriet;Vincent Christlein;Georgina Cosma;J. Cousty;Marco Cristani;Adam M Czajka;N. Damer;A. Dantcheva;Swagatam Das;M. De Marsico;A. D. Bue;Bo Du;Jenny Du;Mahmoud El;Ale;re Falcão;re;G. Farinella;Francesc J. Ferri;C. Fookes;A. Fornés;Victor Fragoso;Éric Granger;Marcin Grzegorzek;Manuel Günther;Hu Han;Jungong Han;Gao Huang;Helen Huang;Kaiqi Huang;Kaizhu Huang;Qinghua Huang;Atsushi Imiya;Brijnesh Jain;Robert Jenssen;Ian H. Jermyn;Rongrong Ji;Qi Jia;Pedro Real Jurado;Srikrishna Karanam;Tae;N. Kiryati;A. Kuijper;Vitaliy Kurlin;Louisa Lam;Ed Lawson;Ying Li;Zhifeng Li;Jessica Lin;Kang Liu;Li Liu;Mingxia Liu;Risheng Liu;Tencent Shenzhen China Wei Liu;J. Lladós;M. Loog;Brian Lovell;Bai Lu;Huimin Lu;Jiwen Lu;Shijian Lu;Yue Lu;A. Lumini;F. Marcolin;José Francisco Martínez;Takeshi Masuda;Scott McCloskey;Chris C. McCool;Tao Mei;Ajmal Mian;M. Milanova;G. Montavon;Daniel Moreira;Martin Mundt;Tu Darmstadt;Yi Lu Murphey;Karthik N;akumar;akumar;L. Nanni;Feiping Nie;W. Ouyang;J. P. Papa;Vishal Patel;D. Pedronette;Marcello Pelillo;Tuan Pham;Guo;H. Rangwala;A. R. Rao;Eraldo Ribeiro;Elisa Ricci;Kaspar Riesen;A. Robles;Luca Rossi;A. Salah;Wojciech Samek;Shin'ichi Satoh;P. Sattigeri;Shishir K. Shah;Heng Tao;Shen;Jialie Shen;Z. Shi;Ikuko Shimizu;A. Shokouf;eh;eh;William A. P. Smith;Enrique Sucar;Kyoko Sudo;Yusuke Sugano;Ponnuthurai Nagaratnam;Suganthan;Qianru Sun;Shiliang Sun;Kenji Suzuki;Antoine Tabbone;Mohammad Tanveer;Ricardo S Torres;A. Torsello;Pavan Turaga;M. Vatsa;Mario Vento;Enrico Vezzetti;Nicole Vincent;Liang Wang;Qi Wang;Shanshan Wang;Xinchao Wang;Xinggang Wang;Jianxin Wu;Qi Wu;Yihong Wu;Junchi Yan;Herb Yang;Jian Yang;Jane Jia You;Jun Yu;Shiqi Yu;Yuan Yuan;Pong Chi;Yuen;R. Zanibbi;Kun Zhang;Xu;Ya Zhang;Zhao Z. Zhang;Zhihong Zhang;Guoying Zhao;Huiyu H. Zhou;Jun Zhou;Luping Zhou;Xiaoxiang Zhu;B. Zitová - 通讯作者:
B. Zitová
Pattern Recognition
模式识别
- DOI:
10.1007/978-1-4613-4154-3 - 发表时间:
1978-09-14 - 期刊:
- 影响因子:0
- 作者:
Pascal Francis;Edwin Hancock;Robert S. Ledley†;C. Y. Suen;Zoran Duric;A. K. Jain;Dacheng Tao;Ognjen Ar;jelovíc;jelovíc;Adam Krzyzak;Longin Jan;Latecki;Cheng;P. Radeva;W. Scheirer;R. Wilson;Majid Ahmadi;Saket An;George Azzopardi;R. V. Babu;Song Bai;Xiang Bai;Vineeth N. Balasubramanian;Christian Bauckhage;Esube Bekele;P. Bestagini;Horst Bischof;Ryoma Bise;Nathaniel Blanchard;T. Bourlai;T. Breckon;Catherine Breslin;Luc Brun;Hyeran Byun;Shaun Canavan;Chee Seng;Chan;Hong Chang;S. Chatzis;Chao Chen;Chi H. Chen;Dongdong Chen;Shengyong Chen;Heng;Jian Cheng;Mohamed Cheriet;Vincent Christlein;Georgina Cosma;J. Cousty;M. Cristani;Adam M Czajka;N. Damer;A. Dantcheva;Swagatam Das;M. De Marsico;A. D. Bue;Bo Du;Jenny Du;Mahmoud El;Ale;re Falcão;re;G. Farinella;Francesc J. Ferri;C. Fookes;A. Fornés;Victor Fragoso;Éric Granger;Marcin Grzegorzek;Manuel Günther;Hu Han;Jungong Han;Gao Huang;Helen Huang;Kaiqi Huang;Kaizhu Huang;Qinghua Huang;Atsushi Imiya;Brijnesh Jain;Robert Jenssen;Ian H. Jermyn;Rongrong Ji;Qi Jia;Pedro Real Jurado;Srikrishna Karanam;Tae;N. Kiryati;A. Kuijper;Vitaliy Kurlin;Louisa Lam;Ed Lawson;Ying Li;Zhifeng Li;Jessica Lin;Kang Liu;Li Liu;Mingxia Liu;Risheng Liu;Tencent Shenzhen China Wei Liu;J. Lladós;M. Loog;Brian Lovell;Bai Lu;Huimin Lu;Jiwen Lu;Shijian Lu;Yue Lu;A. Lumini;F. Marcolin;José Francisco Martínez;Takeshi Masuda;Scott McCloskey;Chris C. McCool;Tao Mei;Ajmal Mian;M. Milanova;G. Montavon;Daniel Moreira;Martin Mundt;Tu Darmstadt;Yi Lu Murphey;K. N;akumar;akumar;L. Nanni;Feiping Nie;W. Ouyang;J. P. Papa;Vishal Patel;D. Pedronette;Marcello Pelillo;Tuan Pham;Guo;H. Rangwala;A. R. Rao;Eraldo Ribeiro;Elisa Ricci;Kaspar Riesen;A. Robles;Luca Rossi;A. Salah;Wojciech Samek;Shin'ichi Satoh;P. Sattigeri;Shishir K. Shah;Heng Tao;Shen;Jialie Shen;Z. Shi;Ikuko Shimizu;A. Shokouf;eh;eh;William A. P. Smith;Enrique Sucar;Kyoko Sudo;Yusuke Sugano;Ponnuthurai Nagaratnam;Suganthan;Qianru Sun;Shiliang Sun;Kenji Suzuki;Antoine Tabbone;Mohammad Tanveer;Ricardo S Torres;A. Torsello;Pavan Turaga;M. Vatsa;Mario Vento;Enrico Vezzetti;Nicole Vincent;Liang Wang;Qi Wang;Shanshan Wang;Xinchao Wang;Xinggang Wang;Jianxin Wu;Qi Wu;Yihong Wu;Junchi Yan;Herb Yang;Jian Yang;Jane Jia You;Jun Yu;Shiqi Yu;Yuan Yuan;Pong Chi;Yuen;R. Zanibbi;Kun Zhang;Xu;Ya Zhang;Zhao Z. Zhang;Zhihong Zhang;Guoying Zhao;Huiyu H. Zhou;Jun Zhou;Luping Zhou;Xiaoxiang Zhu;B. Zitová - 通讯作者:
B. Zitová
Microstructure
微观结构
- DOI:
10.1201/9781420041910.ch12 - 发表时间:
1984-12-01 - 期刊:
- 影响因子:0
- 作者:
Hamidreza TORBATI;S. Niverty;Rajhans Singh;D. Barboza;Vincent de Andrade;Pavan Turaga;Nikhiles - 通讯作者:
Nikhiles
Orthogonality and graph divergence losses promote disentanglement in generative models
正交性和图散度损失促进生成模型中的解缠结
- DOI:
10.3389/fcomp.2024.1274779 - 发表时间:
2024-05-22 - 期刊:
- 影响因子:2.6
- 作者:
Ankita Shukla;Rishi Dadhich;Rajhans Singh;Anirudh Rayas;Pouria Saidi;Gautam Dasarathy;Visar Berisha;Pavan Turaga - 通讯作者:
Pavan Turaga
A Hierarchical Bayesian Model for Cyber-Human Assessment of Rehabilitation Movement
康复运动网络人类评估的分层贝叶斯模型
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Tamim Ahmed;T. Rikakis;Setor Zilevu;Aisling Kelliher;Kowshik Thopalli;Pavan Turaga;Steven L. Wolf - 通讯作者:
Steven L. Wolf
Pavan Turaga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavan Turaga', 18)}}的其他基金
PIPP Phase I: Computational Foundations for Bio-social Modeling of Unseen Pandemics
PIPP 第一阶段:看不见的流行病生物社会建模的计算基础
- 批准号:
2200161 - 财政年份:2022
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant
FW-HTF-P: The Future of Workplace Wellness
FW-HTF-P:工作场所健康的未来
- 批准号:
2026512 - 财政年份:2020
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Geometrical and Statistical Modeling of Space-Time symmetries for Human Action Analysis and Retraining
CIF:小型:协作研究:用于人类行为分析和再训练的时空对称性的几何和统计建模
- 批准号:
1617999 - 财政年份:2016
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant
CAREER: Role of geometry in dynamical modeling of human movement: Applications to activity quality assessment across Euclidean, non-Euclidean, and function spaces
职业:几何在人体运动动态建模中的作用:在欧几里德、非欧和功能空间的活动质量评估中的应用
- 批准号:
1452163 - 财政年份:2015
- 资助金额:
$ 59.55万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Geometry-aware and data-adaptive signal processing for resource constrained activity analysis
CIF:小型:协作研究:用于资源受限活动分析的几何感知和数据自适应信号处理
- 批准号:
1320267 - 财政年份:2013
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant
相似国自然基金
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
整合深度学习和分子对接的RNA-小分子建模研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小整合膜蛋白SMIM24通过PON2介导的GLUT1质膜转位调控胃癌糖酵解和侵袭转移的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
MFGE8介导整合素αvβ3-STAT3信号轴调控小胶质细胞极化平衡在创伤性脑损伤中的作用及机制研究
- 批准号:82101456
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PNPT1及其小分子抑制剂在非小细胞肺癌整合应激反应中的功能和应用研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
RI: Small: A New Approach to Integrating Graphical Models in Decision-Theoretic Planning
RI:小型:在决策理论规划中集成图形模型的新方法
- 批准号:
1718384 - 财政年份:2017
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant
RI: Small: Integrating Flexible Normalization Models of Visual Cortex into Deep Neural Networks
RI:小:将视觉皮层的灵活标准化模型集成到深度神经网络中
- 批准号:
1715475 - 财政年份:2017
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant
RI: Small: Integrating Learning and Search for Structured Prediction
RI:小型:集成学习和搜索以进行结构化预测
- 批准号:
1219258 - 财政年份:2012
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant
RI: Small: Integrating Paradigms for Approximate Stochastic Planning
RI:小型:集成近似随机规划的范式
- 批准号:
1016465 - 财政年份:2010
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant
RI: Small: Integrating Logic Based Declarative Programming Paradigms
RI:小型:集成基于逻辑的声明式编程范式
- 批准号:
1018031 - 财政年份:2010
- 资助金额:
$ 59.55万 - 项目类别:
Standard Grant