Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models

合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法

基本信息

  • 批准号:
    2334898
  • 负责人:
  • 金额:
    $ 29.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

Detecting abrupt changes in the underlying statistical characteristics of online data streams is an important problem commonly encountered in many science and engineering applications. Examples include anomaly detection using video streams, line-outage detection in power grids, onset detection of a pandemic, and detection of cyber-attacks. While traditional techniques assume that probability distributions for both before and after the change are known or can be found, this assumption is unrealistic in most scenarios of practical interest. As an alternative to such traditional change-detection approaches, this project considers the use of deep neural networks to effectuate change detection. However, rather than attempting to learn probability distributions directly, the project leverages the recently-demonstrated ability of deep neural networks to learn the "score" (i.e., the gradient of logarithm of the probability density) from the data and aims to develop score-based algorithms for change detection. These scores can be learned for a large class of high-dimensional data models using modern tools of artificial intelligence and rendering the developed algorithms applicable to a broad class of change-detection problems. Fundamental mathematical theories will be developed in the project to establish the efficacy and efficiency of the proposed methods, and the developed algorithms will be validated on several publicly available machine-learning and anomaly-detection datasets. Broader-impact aspects of the project include providing algorithms to the wider community for solving change- and anomaly-detection problems across multiple, disparate fields as well as activities centered on integrating research into graduate coursework and providing opportunities for underrepresented students to participate in the project. The algorithms developed in the project will be based on the score of the data; this score can be explicitly derived for known unnormalized models or can be learned using score matching using an artificial neural network, and developed algorithms will be optimized to detect the changes with the minimum possible delay while avoiding false alarms. The project is divided into four technical thrusts. The first thrust will develop the fundamental theory for score-based quickest change detection for independent and identically distributed single-stream data under Bayesian, generalized Bayesian, and minimax problem formulations. While the performance of classical change-detection methods depends on the Kullback-Leibler distance between the distributions before and after the change, it will be established that the performance of the score-based methods depends on the Fisher distance between distributions. The second thrust will develop robust methods for detecting changes under modeling uncertainty, using the Fisher distance between the elements of the uncertainty classes. The third thrust will define the notion of scores for dependent data sequences and obtain optimal algorithms for detecting changes, with the scores in this case being based on the gradient of the logarithm of the conditional densities. The fourth and final thrust will develop algorithms for distributed change detection wherein multiple agents may have partial knowledge of the distributions and may only communicate with their neighbors in a geographical area. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
检测在线数据流的基础统计特征的突然变化是许多科学和工程应用中经常遇到的一个重要问题,示例包括使用视频流的异常检测、电网中的线路中断检测、流行病的爆发检测以及流行病的检测。虽然传统技术假设更改之前和之后的概率分布都是已知的或可以找到,但该假设在大多数实际情况下是不现实的,该项目认为作为这种传统更改检测方法的替代方案。使用深度神经网络然而,该项目并没有尝试直接学习概率分布,而是利用最近展示的深度神经网络从数据中学习“分数”(即概率密度对数的梯度)的能力。旨在开发基于分数的变化检测算法。这些分数可以使用现代人工智能工具来学习一大类高维数据模型,并使开发的算法适用于广泛的变化检测问题。数学的该项目将开发理论来确定所提出方法的有效性和效率,并且所开发的算法将在多个公开可用的机器学习和异常检测数据集上进行验证,该项目的更广泛影响方面包括向更广泛的社区,用于解决多个不同领域的变化和异常检测问题,以及以将研究融入研究生课程并为代表性不足的学生提供参与该项目的机会为中心的活动。该项目中开发的算法将基于分数为数据;该分数可以针对已知的非标准化模型显式导出,也可以使用人工神经网络使用分数匹配来学习,并且将优化开发的算法,以尽可能小的延迟检测变化,同时避免误报。分为四个技术主旨。第一个主旨将开发贝叶斯、广义贝叶斯和极小极大问题公式下的独立且同分布的单流数据的基于分数的最快变化检测的基本理论,而经典变化检测方法的性能取决于。在变化前后分布之间的 Kullback-Leibler 距离将确定基于评分的方法的性能取决于分布之间的 Fisher 距离。第二个推动力将使用以下方法开发稳健的方法来检测建模不确定性下的变化。第三个推力将定义相关数据序列的分数概念,并获得用于检测变化的最佳算法,在这种情况下,分数基于条件密度对数的梯度。第四个和最终目标是开发分布式变化检测算法,多个智能体可能对分布有部分了解,并且只能与某个地理区域内的邻居进行通信。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,被认为值得支持优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vahid Tarokh其他文献

REFORMA: Robust REinFORceMent Learning via Adaptive Adversary for Drones Flying under Disturbances
REFORMA:通过自适应对手为干扰下飞行的无人机提供强大的强化学习
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao;Haocheng Meng;Shaocheng Luo;Juncheng Dong;Vahid Tarokh;Miroslav Pajic
  • 通讯作者:
    Miroslav Pajic
Training Sequence Design for Wireless Collaborative Communication Systems in Frequency-Selective Fading
频率选择性衰落无线协作通信系统的训练序列设计
P RUNING D EEP N EURAL N ETWORKS FROM A S PAR - SITY P ERSPECTIVE
从 A SPAR 的角度修剪深度神经网络
Off-Policy Evaluation for Human Feedback
人类反馈的离线策略评估
  • DOI:
    10.48550/arxiv.2310.07123
  • 发表时间:
    2023-10-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qitong Gao;Ge Gao;Juncheng Dong;Vahid Tarokh;Min Chi;Miroslav Pajic
  • 通讯作者:
    Miroslav Pajic
Steering Decision Transformers via Temporal Difference Learning
通过时间差异学习引导决策转换器
  • DOI:
    10.48550/arxiv.2306.06871
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao;A. Bozkurt;Juncheng Dong;Qitong Gao;Vahid Tarokh;Miroslav Pajic;Alper Kamil
  • 通讯作者:
    Alper Kamil

Vahid Tarokh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vahid Tarokh', 18)}}的其他基金

Collaborative Research: SWIFT: Dynamic Spectrum Sharing via Stochastic Optimization
合作研究:SWIFT:通过随机优化实现动态频谱共享
  • 批准号:
    2229468
  • 财政年份:
    2022
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Dynamic Spectrum Sharing via Stochastic Optimization
合作研究:SWIFT:通过随机优化实现动态频谱共享
  • 批准号:
    2229468
  • 财政年份:
    2022
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Approximate Computing on Real World Data Using Representation and Coding
协作研究:使用表示和编码对现实世界数据进行近似计算
  • 批准号:
    1848810
  • 财政年份:
    2018
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Approximate Computing on Real World Data Using Representation and Coding
协作研究:使用表示和编码对现实世界数据进行近似计算
  • 批准号:
    1609605
  • 财政年份:
    2016
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
EAGER: Limited Communications Demand Control in Power Grid
EAGER:电网中有限的通信需求控制
  • 批准号:
    1548204
  • 财政年份:
    2015
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Low Peak to Average Power Multicarrier Signals via Coding: Fundamental Limits and Algorithms
协作研究:通过编码实现低峰值平均功率多载波信号:基本限制和算法
  • 批准号:
    0728572
  • 财政年份:
    2007
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Alan T. Waterman Award
艾伦·T·沃特曼奖
  • 批准号:
    0240625
  • 财政年份:
    2002
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Continuing Grant
Alan T. Waterman Award
艾伦·T·沃特曼奖
  • 批准号:
    0139398
  • 财政年份:
    2001
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了