NCS-FO: A microfluidic MEMS approach to study force-induced changes in neurons

NCS-FO:一种用于研究力引起的神经元变化的微流控 MEMS 方法

基本信息

  • 批准号:
    1631656
  • 负责人:
  • 金额:
    $ 88.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

CBET - 1631656Turner, KimberlyThe brain is a highly plastic organ, capable of learning, remembering and adapting. However, it is also a plastic material with mechanical properties of strength, hardness, and impact resistance. A major challenge in neuroengineering is to understand the biophysical properties of the brain and how these differ between individuals. In particular, how do differences in the mechanical properties of the brain alter the experience of force and the consequences of impact? A major limitation in the systematic study of force on the brain has been the inability to reliably apply impacts or pressure to individual cells. The uHammer project aims to develop just such a highly engineered tool for the application of force to individual neural cells. These single cell studies will allow us to compare individual differences in neural responses to force, including changes in cell mechanics, structure, viability, and gene expression. This project, a collaboration between industry and multi-faceted academic team, will support the Ph.D. work of two graduate students, hold a workshop to bring together top researchers interested in this important societal problem, and train undergraduate research interns, while attempting to unlock some of the mysteries surrounding the brain today.The focus of this work is to probe the mechanical properties of neural tissue and the subsequent effects on function. To examine the consequences of force on neurons, a device must apply precise forces to single cells over a few microseconds. No existing devices provide these force and temporal responses, and developing such a device would enable broad, new classes of cellular measurements. The development of a MEMS based device (the uHammer) that uses time gated magnetic actuation to deliver milliNewton impact forces to single cells in a high throughput fashion, will enable these measurements. The device, capitalizing on recent advances in micro and nanoscale transduction, microfluidics, and analytical techniques, will allow cells to be monitored in real-time and collected after impact for analysis. The uHammer will enable entirely new classes of experiments, in which the biological consequences of impact loading can be recorded and monitored as a function of force amplitude, direction, duration, and time after loading. The focus is to develop a significantly improved understanding of the role of impact and pressure loading on individual neurons, neural progenitors, and brain tissue. The technical goals are to Design, fabricate and test a tool (the uHammer) able to apply physiologically relevant loads to single cell, optimize the device for high-throughput manipulation of neural stem cells, and quantify the effect of impact on single cell mechanics, structure, viability, colony formation and gene expression. The uHammer team of engineers, neuroscientists, biologists and industry leaders is able to tackle these challenging questions, while also providing a unique learning environment for undergraduates and graduate students. The multidisciplinary uHammer team has the ability to design new technology with the end user in mind, enable new scientific discovery, and transform it into therapies and treatments. The proposed technology will enable experiments that are not presently possible, and the link to and commitment from industrial partner Owl Biomedical, will enable rapid commercial developments. With these partnerships and goals in hand, UCSB is poised to make game-changing breakthroughs on problems including traumatic brain injury (TBI) and Alzheimers disease
CBET -1631656Turner,Kimberlythe大脑是一种高度塑料器官,能够学习,记忆和适应。但是,它也是一种具有强度,硬度和抗冲击力的机械性能的塑料。神经工程的主要挑战是了解大脑的生物物理特性以及个体之间的不同之处。特别是,大脑机械性能的差异如何改变力的经验和影响的后果?对大脑力的系统研究的主要局限性是无法可靠地对单个细胞施加影响或压力。 Uhammer项目旨在开发出一种高度设计的工具,用于将力应用于单个神经细胞。这些单细胞研究将使我们能够比较神经反应对力的个体差异,包括细胞力学,结构,活力和基因表达的变化。 该项目是行业与多方面学术团队之间的合作,将支持博士学位。两位研究生的工作,举办一个研讨会,以将对这一重要社会问题感兴趣的顶级研究人员汇集在一起​​,并培训本科研究实习生,同时试图解锁今天大脑周围的一些奥秘。这项工作的重点是探测神经组织的机械性能以及随后对功能的作用。为了检查力对神经元的后果,设备必须在几微秒内将精确力应用于单个细胞。现有的设备没有提供这些力和时间响应,开发这种设备将实现广泛的新类细胞测量。基于MEMS的设备(The Uhammer)的开发,该设备使用时间门控磁性致动物以高吞吐量向单个细胞传递千分之一的撞击力,将实现这些测量。该设备利用了微观和纳米级转导,微流体和分析技术的最新进展,将允许实时监测细胞并在撞击后收集以进行分析。 Uhammer将启用全新的实验类别,其中可以记录和监测撞击负荷的生物学后果,这是加载后力振幅,方向,持续时间和时间的函数。重点是对影响和压力负荷对单个神经元,神经祖细胞和脑组织的影响的作用有显着提高的理解。技术目标是设计,制造和测试一个能够将与生理相关的载荷应用于单细胞的工具,优化对神经干细胞进行高通量操纵的设备,并量化对单个细胞力学,结构,生存力,结构形成和基因表达的影响的影响。 Uhammer工程师,神经科学家,生物学家和行业领导者团队能够解决这些具有挑战性的问题,同时还为大学生​​和研究生提供了独特的学习环境。多学科的Uhammer团队能够牢记最终用户设计新技术,实现新的科学发现,并将其转变为疗法和治疗方法。拟议的技术将实现目前不可能的实验,并且工业合作伙伴OWL生物医学的链接和承诺将实现快速的商业发展。有了这些伙伴关系和目标,UCSB准备在包括脑外伤(TBI)和阿尔茨海默氏病等问题上改变游戏规则的突破

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlled Single-Cell Compression With a High-Throughput MEMS Actuator
使用高通量 MEMS 致动器控制单细胞压缩
  • DOI:
    10.1109/jmems.2020.3005514
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Walker, Jennifer L.;Patterson, Luke H.;Rodriguez-Mesa, Evelyn;Shields, Kevin;Foster, John S.;Valentine, Megan T.;Doyle, Adele M.;Foster, Kimberly L.
  • 通讯作者:
    Foster, Kimberly L.
THE μHAMMER: INVESTIGATING CELLULAR RESPONSE TO IMPACT WITH A HIGH THROUGHPUT MICROFLUIDIC MEMS DEVICE
μHAMMER:利用高通量微流控 MEMS 设备研究细胞对冲击的反应
  • DOI:
    10.31438/trf.hh2018.47
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patterson, L.H.C.;Walker, J.L.;Rodriguez-Mesa, E.;Shields, K.;Foster, J.S.;Valentine, M.T.;Doyle, A.M.;Foster, K.L.
  • 通讯作者:
    Foster, K.L.
Inertial flow focusing: a case study in optimizing cellular trajectory through a microfluidic MEMS device for timing-critical applications
  • DOI:
    10.1007/s10544-020-00508-1
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Luke H. C. Patterson;Jennifer L. Walker;Mark A. Naivar;E. Rodriguez-Mesa;M. R. Hoonejani;K. Shields;J. Foster;A. Doyle;M. Valentine;K. Foster
  • 通讯作者:
    Luke H. C. Patterson;Jennifer L. Walker;Mark A. Naivar;E. Rodriguez-Mesa;M. R. Hoonejani;K. Shields;J. Foster;A. Doyle;M. Valentine;K. Foster
Investigating Cellular Response to Impact With a Microfluidic MEMS Device
使用微流控 MEMS 设备研究细胞对冲击的响应
  • DOI:
    10.1109/jmems.2019.2948895
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Patterson, Luke H. C.;Walker, Jennifer L.;Rodriguez-Mesa, Evelyn;Shields, Kevin;Foster, John S.;Valentine, Megan T.;Doyle, Adele M.;Foster, Kimberly L.
  • 通讯作者:
    Foster, Kimberly L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kimberly Foster其他文献

The MEMS μHammer: Impacting Neuroscience One Cell at a Time
  • DOI:
    10.1016/j.bpj.2017.11.3624
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Jennifer Walker;Luke Patterson;Evelyn Rodriguez-Mesa;John Foster;Adele Doyle;Kimberly Foster
  • 通讯作者:
    Kimberly Foster

Kimberly Foster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kimberly Foster', 18)}}的其他基金

Collaborative Research: Nonlinear Coupling and Relaxation Mechanisms in Micro-mechanics
合作研究:微观力学中的非线性耦合和弛豫机制
  • 批准号:
    1662500
  • 财政年份:
    2017
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Capabilities of Micro-scale Vibratory Systems by Embracing and Accounting for Large-Amplitude Responses
合作研究:通过拥抱和考虑大振幅响应来提高微尺度振动系统的能力
  • 批准号:
    1561934
  • 财政年份:
    2016
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Standard Grant
Collaborative Research: MEMS Frequency Converters Based on Nonlinear Resonances
合作研究:基于非线性谐振的MEMS变频器
  • 批准号:
    1234645
  • 财政年份:
    2012
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Standard Grant
Student Travel Support for Americas Workshop on Solid State Sensors & Actuators (Hilton Head 2010), June 6-10, 2010
美洲固态传感器研讨会的学生旅行支持
  • 批准号:
    1041484
  • 财政年份:
    2010
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Standard Grant
Student/Young Faculty Travel Support for Americas Workshop on Solid-State Sensors & Actuators 2008. To be held on June 1-5 at Hilton Head.
美洲固态传感器研讨会的学生/年轻教师旅行支持
  • 批准号:
    0834803
  • 财政年份:
    2008
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel Microscale Resonant Sensors for Chemical and Biological Detection
合作研究:用于化学和生物检测的新型微型谐振传感器
  • 批准号:
    0800753
  • 财政年份:
    2008
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Standard Grant
NIRT: Reversible Frictional Adhesion of Natural and Bio-Inspired Multi-Scale Structures
NIRT:自然和仿生多尺度结构的可逆摩擦粘附
  • 批准号:
    0708367
  • 财政年份:
    2007
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Standard Grant
Collaborative Research: MEMS from Organized Mesoscale Architectures of Carbon Nanotubes
合作研究:来自碳纳米管有序介观结构的 MEMS
  • 批准号:
    0424416
  • 财政年份:
    2004
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Continuing Grant
SST: Dynamics of Microbeam Sensor Arrays
SST:微束传感器阵列的动力学
  • 批准号:
    0428916
  • 财政年份:
    2004
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Standard Grant
Dynamic Friction Models for Micro and Nanosystems
微纳米系统的动态摩擦模型
  • 批准号:
    0414298
  • 财政年份:
    2004
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Standard Grant

相似国自然基金

烟曲霉F1Fo-ATP合成酶β亚基在侵袭性曲霉病发生中的作用及机制研究
  • 批准号:
    82304035
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白念珠菌F1Fo-ATP合酶中创新药靶的识别与确认研究
  • 批准号:
    82272357
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
GRACE-FO高精度姿态数据处理及其对时变重力场影响的研究
  • 批准号:
    42204091
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
白念珠菌F1Fo-ATP合酶中创新药靶的识别与确认研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
GRACE-FO高精度姿态数据处理及其对时变重力场影响的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

複数のFoトルク発生ユニットを持つATP合成酵素の創出
使用多个 Fo 扭矩产生单元创建 ATP 合酶
  • 批准号:
    24K01987
  • 财政年份:
    2024
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NCS-FO: Brain-Informed Goal-Oriented and Bidirectional Deep Emotion Inference
NCS-FO:大脑知情的目标导向双向深度情感推理
  • 批准号:
    2318984
  • 财政年份:
    2023
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
  • 批准号:
    2319406
  • 财政年份:
    2023
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319450
  • 财政年份:
    2023
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319451
  • 财政年份:
    2023
  • 资助金额:
    $ 88.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了