Synthesis and Directed Assembly of Bio-Hybrid Materials with Membrane-Protein-Mediated Transport Performance
具有膜蛋白介导的运输性能的生物杂化材料的合成和定向组装
基本信息
- 批准号:1623241
- 负责人:
- 金额:$ 39.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical: This award by the Biomaterials Program in the Division of Materials Research to Colorado School of Mines aims to overcome the materials challenge on harnessing membrane protein (MP) functions in engineered systems. MPs represent a family of biologically-derived and bio-renewable high-performance nanomaterials that are largely unexplored. These proteins are the "gate-keepers" of cells, and are involved in critical life processes, such as energy conversion, matter transport and information processing. These same MP-mediated functions are also highly coveted nanoengineering feats in synthetic systems. Exploiting MPs for nanoengineering may help understand, predict, and ultimately control recognition and transport at the nanoscale, but is greatly impeded by the fluidic and labile nature of biomembranes. This study bridges the gap between biotic and abiotic systems by developing chemically versatile synthetic membranes to support MP functions. The successful outcome of this study will help unleash the full potential of MPs to create novel nanotechnologies ranging from solar conversion to high throughput diagnostics. With respect to broad impact on education, this project builds a multi-tiered education program on renewable materials. The objective of this program is to bring societal awareness on sustainability, and motivate undergraduate and K-12 students to pursue career paths on bio-renewable materials. A focused outreach component, "Summer Experience @ Mines", targets minority students at a local high school by hosting their first exposure to engineering studies and college life, and develop curriculum materials for their Biotechnology class. A broader outreach component includes training K-12 science teachers and dissemination of the curriculum materials to local and nearby school districts. Technical: This award is to develop bio-hybrid materials with membrane-protein-mediated transport performance. Membrane proteins (MPs) are biologically-derived and bio-renewable high-performance nanomaterials. Despite numerous proof-of-concept demonstrations of MPs' great potential in engineered systems, little is known on how to design synthetic MP-supporting membranes that balance a dichotomy between fluidity and stability, and how to direct spontaneous MP reconstitution into these robust membranes to form 2-dimensional (2-D) or 3-D proteomembrane arrays. Using proteorhodopsin, a light-driven proton pump as a model, this study will elucidate: (1) the directed assembly principles to reconstitute proteorhodopsin into hierarchically organized proteomembrane arrays; and (2) the roles of synthetic membranes in shaping proteorhodopsin function. Since proteorhodopsin has a common seven transmembrane (7 TM) architecture of G protein-coupled receptors, a large family of MPs that regulate energy conversion, matter transport and biosensing. The guiding concepts learnt from this study have the potential to benefit a broad range of MP-based nanotechnologies. This multidisciplinary study provides ample opportunities to train students at the interdisciplinary area of materials engineering, synthetic chemistry, biophysics, and protein engineering. With this award, this research group will design a multi-tiered soft matter education program entitled "Renewable Materials for Sustainable Future". This program aims to: (1) improve educational components on soft matter by course development; (2) support undergraduate students from the Undergraduate Research Opportunity Program, the Society of Women Engineering, and International Exchange Students Program to have "hands-on" research experience; and (3) build regular and systematic outreach activities to K-12 students in local and nearby school districts.
非技术性:该奖项由科罗拉多矿业学院材料研究部生物材料项目颁发,旨在克服在工程系统中利用膜蛋白 (MP) 功能的材料挑战。 MP 代表了一系列生物衍生和生物可再生的高性能纳米材料,这些材料在很大程度上尚未被开发。这些蛋白质是细胞的“看门人”,参与关键的生命过程,如能量转换、物质运输和信息处理。这些相同的 MP 介导的功能也是合成系统中令人垂涎的纳米工程壮举。利用 MP 进行纳米工程可能有助于理解、预测并最终控制纳米尺度的识别和运输,但受到生物膜的流体和不稳定性质的极大阻碍。这项研究通过开发化学多功能合成膜来支持 MP 功能,从而弥合了生物和非生物系统之间的差距。这项研究的成功结果将有助于释放议员的全部潜力,创造从太阳能转换到高通量诊断等新型纳米技术。就对教育的广泛影响而言,该项目建立了一个关于可再生材料的多层次教育计划。该计划的目标是提高社会对可持续发展的认识,并激励本科生和 K-12 学生追求生物可再生材料的职业道路。一个重点推广部分“夏季体验@矿业”针对当地高中的少数族裔学生,让他们第一次接触工程研究和大学生活,并为他们的生物技术课程开发课程材料。更广泛的外展部分包括培训 K-12 科学教师以及向当地和附近学区传播课程材料。 技术:该奖项旨在开发具有膜蛋白介导的运输性能的生物混合材料。膜蛋白(MP)是生物衍生的、生物可再生的高性能纳米材料。尽管大量的概念验证证明了 MP 在工程系统中的巨大潜力,但对于如何设计平衡流动性和稳定性之间的二分法的合成 MP 支持膜,以及如何将 MP 自发重构到这些坚固的膜中,人们知之甚少。形成 2 维 (2-D) 或 3-D 蛋白质膜阵列。本研究以光驱动质子泵蛋白视紫红质为模型,阐明:(1)将蛋白视紫红质重组为分层组织的蛋白膜阵列的定向组装原理; (2)合成膜在塑造蛋白视紫红质功能中的作用。由于蛋白视紫红质具有常见的 G 蛋白偶联受体七次跨膜 (7 TM) 结构,因此是调节能量转换、物质运输和生物传感的 MP 大家族。从这项研究中学到的指导概念有可能使广泛的基于 MP 的纳米技术受益。这项多学科研究为材料工程、合成化学、生物物理学和蛋白质工程等跨学科领域的学生提供了充足的培训机会。凭借该奖项,该研究小组将设计一个名为“可持续未来的可再生材料”的多层次软物质教育项目。该计划旨在:(1)通过课程开发改进软物质的教育内容; (2)支持本科生研究机会计划、女性工程学会和国际交换生计划的本科生获得“实践”研究经验; (3) 为当地和附近学区的 K-12 学生开展定期、系统的外展活动。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrophilic Phage-Mimicking Membrane Active Antimicrobials Reveal Nanostructure-Dependent Activity and Selectivity
- DOI:10.1021/acsinfecdis.7b00076
- 发表时间:2017-09-01
- 期刊:
- 影响因子:5.3
- 作者:Jiang, Yunjiang;Zheng, Wan;Liang, Hongjun
- 通讯作者:Liang, Hongjun
Extraction and reconstitution of membrane proteins into lipid nanodiscs encased by zwitterionic styrene-maleic amide copolymers
- DOI:10.1038/s41598-020-66852-7
- 发表时间:2020-06-18
- 期刊:
- 影响因子:4.6
- 作者:Fiori, Mariana C.;Zheng, Wan;Liang, Hongjun
- 通讯作者:Liang, Hongjun
Computational and Experimental Studies of Lipid-Protein Interactions in Biomemrane Function
生物膜功能中脂质-蛋白质相互作用的计算和实验研究
- DOI:10.1016/j.bpj.2015.11.1411
- 发表时间:2016
- 期刊:
- 影响因子:3.4
- 作者:Musharrafieh, Rami;Chawla, Udeep;Zheng, Wan;Kaung, Liangju;Perera, Suchithranga M.D.C.;Knowles, Thomas;Huang, Annie;Pitman, Michael C.;Wang, Jun;Liang, Hongjun
- 通讯作者:Liang, Hongjun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongjun Liang其他文献
Strength prediction of corrosion reinforced concrete columns strengthened with concrete filled steel tube under axial compression
钢管混凝土加固锈蚀钢筋混凝土柱轴压强度预测
- DOI:
10.12989/scs.2020.37.4.481 - 发表时间:
2020 - 期刊:
- 影响因子:4.6
- 作者:
Hongjun Liang;Yanju Jiang;Yiyan Lu;Jiyue Hu - 通讯作者:
Jiyue Hu
A Chemical-genetics and Nanoparticle Enabled Approach for in vivo Protein Kinase Analysis
用于体内蛋白激酶分析的化学遗传学和纳米颗粒方法
- DOI:
10.1101/2020.05.13.094573 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Fengqian Chen;Qi Liu;Terrell Hilliard;Ting;Hongjun Liang;Weimin Gao;Leaf Huang;Degeng Wang - 通讯作者:
Degeng Wang
Axial behaviour of CFST stub columns strengthened with steel tube and sandwiched concrete jackets
钢管夹层混凝土导管架加固钢管混凝土短柱的轴向性能
- DOI:
10.1016/j.tws.2020.106942 - 发表时间:
2020-10 - 期刊:
- 影响因子:6.4
- 作者:
Hongjun Liang;Weijie Li;Yue Huang;Yiyan Lu - 通讯作者:
Yiyan Lu
Study on Tensile Properties of CFRP Plates under Elevated Temperature Exposure
CFRP板高温拉伸性能研究
- DOI:
10.3390/ma12121995 - 发表时间:
2019-06 - 期刊:
- 影响因子:3.4
- 作者:
Yongxin Yang;Yanju Jiang;Hongjun Liang;Xiaosan Yin;Yue Huang - 通讯作者:
Yue Huang
Numerical study and strength model of concrete-filled high-strength tubular flange beam under mid-span load
跨中荷载下高强管状翼缘混凝土梁数值研究及强度模型
- DOI:
10.1016/j.engstruct.2020.111654 - 发表时间:
2021-02 - 期刊:
- 影响因子:5.5
- 作者:
Fei Gao;Fan Yang;Hongjun Liang;Hongping Zhu - 通讯作者:
Hongping Zhu
Hongjun Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongjun Liang', 18)}}的其他基金
I-Corps: Mitigating Multidrug Resistant Bacterial Infections with Biocompatible and Environmentally Benign Nanoantibiotics
I-Corps:利用生物相容性且对环境无害的纳米抗生素减轻多重耐药细菌感染
- 批准号:
2306943 - 财政年份:2023
- 资助金额:
$ 39.83万 - 项目类别:
Standard Grant
Biodegradable Polymer Nanodiscs as Novel Lipoprotein-Mimicking Nanocarriers for Anticancer Drug Delivery with High Stability and Long Circulation Time
可生物降解的聚合物纳米盘作为新型脂蛋白模拟纳米载体,用于高稳定性和长循环时间的抗癌药物输送
- 批准号:
2213969 - 财政年份:2022
- 资助金额:
$ 39.83万 - 项目类别:
Standard Grant
Nanostructure Engineering Is Another Approach Toward Membrane-Active Antimicrobials with Desirable Activity and Selectivity
纳米结构工程是开发具有理想活性和选择性的膜活性抗菌剂的另一种方法
- 批准号:
1810767 - 财政年份:2018
- 资助金额:
$ 39.83万 - 项目类别:
Continuing Grant
Retrievable and Reusable Nanoparticle-Pinched Polymer Brushes Enable Highly Efficient Microalgae Dewatering for Cost-Effective Biofuel Production
可回收和可重复使用的纳米颗粒挤压聚合物刷可实现高效微藻脱水,从而实现具有成本效益的生物燃料生产
- 批准号:
1623240 - 财政年份:2015
- 资助金额:
$ 39.83万 - 项目类别:
Standard Grant
Synthesis and Directed Assembly of Bio-Hybrid Materials with Membrane-Protein-Mediated Transport Performance
具有膜蛋白介导的运输性能的生物杂化材料的合成和定向组装
- 批准号:
1410825 - 财政年份:2014
- 资助金额:
$ 39.83万 - 项目类别:
Standard Grant
Retrievable and Reusable Nanoparticle-Pinched Polymer Brushes Enable Highly Efficient Microalgae Dewatering for Cost-Effective Biofuel Production
可回收和可重复使用的纳米颗粒挤压聚合物刷可实现高效微藻脱水,从而实现具有成本效益的生物燃料生产
- 批准号:
1160291 - 财政年份:2012
- 资助金额:
$ 39.83万 - 项目类别:
Standard Grant
相似国自然基金
叶片旋转与雷电极性效应对大型风机上行先导演化的协同影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于群智感知的城市多源交通安全风险传导演化机理与协同评估研究
- 批准号:52072071
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
KTN晶体极性纳米微区的诱导演化、动态电光响应及其性能调控研究
- 批准号:11674079
- 批准年份:2016
- 资助金额:69.0 万元
- 项目类别:面上项目
基于零价铁固液微界面弱磁场诱导演变特性的分子氧强化活化机理研究
- 批准号:21677055
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
- 批准号:21171046
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
A universal approach for determining three-dimensional RNA structures
确定三维 RNA 结构的通用方法
- 批准号:
10724848 - 财政年份:2023
- 资助金额:
$ 39.83万 - 项目类别:
Structure and Mechanism of Eukaryotic Transcription Regulation
真核生物转录调控的结构和机制
- 批准号:
10445554 - 财政年份:2022
- 资助金额:
$ 39.83万 - 项目类别:
Structure and Mechanism of Eukaryotic Transcription Regulation
真核生物转录调控的结构和机制
- 批准号:
10625407 - 财政年份:2022
- 资助金额:
$ 39.83万 - 项目类别: