I-Corps: Mitigating Multidrug Resistant Bacterial Infections with Biocompatible and Environmentally Benign Nanoantibiotics

I-Corps:利用生物相容性且对环境无害的纳米抗生素减轻多重耐药细菌感染

基本信息

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of antibiotics to mitigate multidrug resistant bacterial infections. Antibiotic resistance is a global public health crisis, and “one of our most serious health threats” according to the CDC. The world has witnessed a surge of superbugs that elude one or more antibiotics at an alarming rate. This situation is exacerbated by the lack of new antibiotics in the pipeline and increasing accumulation of artificial antibiotic wastes in natural habitats that further accelerates resistome development. Membrane-active antimicrobials (MAAs) have been widely anticipated to be promising candidates for new antibiotics. However, toxicity is one of the biggest barriers to the translation of MAAs to the market, of which the indiscriminate hydrophobic interaction that disrupts both bacterial and mammalian membranes is a major contributing factor. The proposed technology uses hydrophilic nanoantibiotics that kill bacteria, including multidrug resistant (MDR) bacterial strains, highly efficiently without damaging mammalian cells. In addition, they have been shown to undergo rapid degradation and deactivation by enzymes that exist in natural habitats when released as wastes. This technology potentially may be used to solve the crisis of antibiotic resistance.This I-Corps project is based on the development of biocompatible and environmentally benign nanoantibiotics. The proposed technology has demonstrated that assembly of hydrophilic and antimicrobial inactive linear-chain polymers into nanostructured polymer molecular brushes (PMBs) turns “ON” their antimicrobial activities collectively, while disassembly of the nanostructured PMBs turns the acquired activities “OFF”. In addition, nanoantibiotics have been shown to kill bacteria by selectively disrupting the bacterial membranes while remaining benign to mammalian cells. Because this mode of damage acts on bacterial membranes instead of targeting biosynthetic pathways as conventional antibiotics do, it is extremely difficult for bacteria to produce resistant strains. Nanoantibiotics low toxicity to mammalian cells further suggests that they have a great potential for clinical use. In addition, the environmentally degradable nanoantibiotics help solve the long-standing problem of continuous accumulations of antibiotic wastes in natural habitats, which alters the structure and function of the microbial community in sensitive ecosystems, threatens food and water security, and accelerates the development of the resistome. The development of environmentally degradable nanoantibiotics may represent a milestone in the search for new antibiotics and may have commercialization potential to fight drug-resistant bacterial infections.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目的更广泛影响/商业潜力是开发抗生素来减轻多重耐药细菌感染,抗生素耐药性是一场全球公共卫生危机,并且根据疾病预防控制中心的说法,这是“我们最严重的健康威胁之一”。由于新抗生素的缺乏以及自然栖息地中人造抗生素废物的不断积累,进一步加速了抗药性的发展,这种情况变得更加严重。膜活性抗菌剂 (MAA) 被广泛认为是新型抗生素的有希望的候选者,然而,毒性是 MAA 进入市场的最大障碍之一,其中不加区别的疏水相互作用会破坏细菌和哺乳动物的细胞膜。所提出的技术使用高亲水性纳米抗生素,可以有效杀死细菌,包括多重耐药(MDR)细菌菌株,而且不会损害哺乳动物细胞。此外,它们已被证明会快速降解。该技术可能用于解决抗生素耐药性危机。该项目基于生物相容性和环境友好的纳米抗生素的开发。将亲水性和抗菌性非活性直链聚合物组装成纳米结构聚合物分子刷(PMB),共同“开启”其抗菌活性,而纳米结构聚合物分子刷的分解此外,纳米抗生素已被证明可以通过选择性破坏细菌膜来杀死细菌,同时对哺乳动物细胞保持良性,因为这种损伤模式作用于细菌膜,而不是像传统抗生素那样针对生物合成途径。细菌极难产生耐药菌株,对哺乳动物细胞的低毒性进一步表明它们具有巨大的临床应用潜力,此外,可环境降解的纳米抗生素有助于解决这一问题。自然栖息地中抗生素废物持续积累的长期问题,改变了敏感生态系统中微生物群落的结构和功能,威胁粮食和水安全,并加速了耐药性的发展,可环境降解的纳米抗生素的发展可能是代表。寻找新抗生素的里程碑,可能具有对抗耐药细菌感染的商业化潜力。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongjun Liang其他文献

Strength prediction of corrosion reinforced concrete columns strengthened with concrete filled steel tube under axial compression
钢管混凝土加固锈蚀钢筋混凝土柱轴压强度预测
  • DOI:
    10.12989/scs.2020.37.4.481
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Hongjun Liang;Yanju Jiang;Yiyan Lu;Jiyue Hu
  • 通讯作者:
    Jiyue Hu
A Chemical-genetics and Nanoparticle Enabled Approach for in vivo Protein Kinase Analysis
用于体内蛋白激酶分析的化学遗传学和纳米颗粒方法
  • DOI:
    10.1101/2020.05.13.094573
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fengqian Chen;Qi Liu;Terrell Hilliard;Ting;Hongjun Liang;Weimin Gao;Leaf Huang;Degeng Wang
  • 通讯作者:
    Degeng Wang
Axial behaviour of CFST stub columns strengthened with steel tube and sandwiched concrete jackets
钢管夹层混凝土导管架加固钢管混凝土短柱的轴向性能
  • DOI:
    10.1016/j.tws.2020.106942
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Hongjun Liang;Weijie Li;Yue Huang;Yiyan Lu
  • 通讯作者:
    Yiyan Lu
Study on Tensile Properties of CFRP Plates under Elevated Temperature Exposure
CFRP板高温拉伸性能研究
  • DOI:
    10.3390/ma12121995
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Yongxin Yang;Yanju Jiang;Hongjun Liang;Xiaosan Yin;Yue Huang
  • 通讯作者:
    Yue Huang
Numerical study and strength model of concrete-filled high-strength tubular flange beam under mid-span load
跨中荷载下高强管状翼缘混凝土梁数值研究及强度模型
  • DOI:
    10.1016/j.engstruct.2020.111654
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Fei Gao;Fan Yang;Hongjun Liang;Hongping Zhu
  • 通讯作者:
    Hongping Zhu

Hongjun Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongjun Liang', 18)}}的其他基金

Biodegradable Polymer Nanodiscs as Novel Lipoprotein-Mimicking Nanocarriers for Anticancer Drug Delivery with High Stability and Long Circulation Time
可生物降解的聚合物纳米盘作为新型脂蛋白模拟纳米载体,用于高稳定性和长循环时间的抗癌药物输送
  • 批准号:
    2213969
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Nanostructure Engineering Is Another Approach Toward Membrane-Active Antimicrobials with Desirable Activity and Selectivity
纳米结构工程是开发具有理想活性和选择性的膜活性抗菌剂的另一种方法
  • 批准号:
    1810767
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Retrievable and Reusable Nanoparticle-Pinched Polymer Brushes Enable Highly Efficient Microalgae Dewatering for Cost-Effective Biofuel Production
可回收和可重复使用的纳米颗粒挤压聚合物刷可实现高效微藻脱水,从而实现具有成本效益的生物燃料生产
  • 批准号:
    1623240
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Synthesis and Directed Assembly of Bio-Hybrid Materials with Membrane-Protein-Mediated Transport Performance
具有膜蛋白介导的运输性能的生物杂化材料的合成和定向组装
  • 批准号:
    1623241
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Synthesis and Directed Assembly of Bio-Hybrid Materials with Membrane-Protein-Mediated Transport Performance
具有膜蛋白介导的运输性能的生物杂化材料的合成和定向组装
  • 批准号:
    1410825
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Retrievable and Reusable Nanoparticle-Pinched Polymer Brushes Enable Highly Efficient Microalgae Dewatering for Cost-Effective Biofuel Production
可回收和可重复使用的纳米颗粒挤压聚合物刷可实现高效微藻脱水,从而实现具有成本效益的生物燃料生产
  • 批准号:
    1160291
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
  • 批准号:
    32302787
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
神经干细胞外泌体传递YBX1调控ANXA2稳定性缓解脑缺血再灌注损伤机制研究
  • 批准号:
    82360386
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
调控NRF2/HO-1/GPX4通路抑制铁死亡缓解疱疹神经痛的机制研究
  • 批准号:
    82301402
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肉桂醛靶向Keap1缓解呕吐毒素诱导仔猪肠道干细胞氧化损伤的机制研究
  • 批准号:
    32302788
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
tDCS缓解老年高孤独感的神经情感机制与个体化效应预测
  • 批准号:
    82371558
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
Improving females' health and performance by mitigating heat strain
通过缓解热应激改善女性的健康和表现
  • 批准号:
    MR/X036235/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Fellowship
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了