CCF-BSF: AF: Small: Collaborative Research: Algorithmic Techniques for Inferring Transmission Networks from Noisy Sequencing Data

CCF-BSF:AF:小型:协作研究:从噪声排序数据推断传输网络的算法技术

基本信息

项目摘要

Many viruses encode their genome in RNA and exhibit high genomic diversity within their hosts. Advances in sequencing technologies have made it feasible to track viral transmissions and timely detect outbreaks on a global scale. The goal of this project is to develop a comprehensive set of predictive mathematical models and accurate computational methods for integrated analysis of the massive epidemiological and sequencing datasets generated by emerging molecular surveillance programs. Research results will be broadly disseminated via journal publications and presentations at international conferences, including the Workshop on Computational Advances in Molecular Epidemiology organized by the PIs. Prototype implementations of developed algorithms will be distributed as open-source packages and incorporated in the cloud-based Global Hepatitis Outbreak and Surveillance Toolkit (GHOST) developed at CDC. The project will provide ample opportunities for promoting participation of women and underrepresented groups in bioinformatics and molecular epidemiology research at GSU, UCONN, Georgia Tech and Tel Aviv University. An important aspect of the project is to disseminate core concepts and ideas from Computer Science and Computational Biology to wide target audiences including: (1) teaching Computer Science, in an informal setting, to middle and high school students, and (2) incorporating computational thinking into Life Science curriculum at the undergraduate university level. The proposed research and education activities will leverage the extensive expertise of an interdisciplinary team comprised of computer scientists, mathematicians, and molecular epidemiologists to develop accurate mathematical models and computational methods for key problems in molecular epidemiology including deconvolution and inference of viral variants from error-prone pooled sequencing data, inference of relatedness between viral samples and transmission networks, inference of transmission event times and network parameters, as well as predictive modeling of transmission network dynamics. The team will carry out extensive algorithm validation on massive molecular surveillance datasets generated at CDC and develop robust prototype software implementations.
许多病毒在RNA中编码其基因组,并在其宿主中表现出较高的基因组多样性。测序技术的进步使跟踪病毒传播并及时检测全球范围的爆发变得可行。 该项目的目的是开发一组全面的预测数学模型和准确的计算方法,用于对新兴分子监视程序产生的大规模流行病学和测序数据集进行综合分析。研究结果将通过国际会议上的杂志出版物和演讲大致传播,包括PIS组织的分子流行病学计算进步研讨会。开发算法的原型实现将以开源包分配,并纳入CDC开发的基于云的全球肝炎爆发和监视工具包(Ghost)。 该项目将为促进妇女和代表性不足的群体在GSU,UCONN,GEORGIA TECH和TEL AVIV大学的生物信息学和分子流行病学研究中提供足够的机会。 该项目的一个重要方面是将核心概念和思想传播到从计算机科学和计算生物学到广泛的目标受众,包括:(1)在非正式的环境中向中学和高中生教授计算机科学,以及(2)将计算思维纳入本科大学级别的生活科学课程。 The proposed research and education activities will leverage the extensive expertise of an interdisciplinary team comprised of computer scientists, mathematicians, and molecular epidemiologists to develop accurate mathematical models and computational methods for key problems in molecular epidemiology including deconvolution and inference of viral variants from error-prone pooled sequencing data, inference of relatedness between viral samples and transmission networks, inference of transmission event times and网络参数以及传输网络动力学的预测建模。该团队将对CDC生成的大量分子监视数据集进行广泛的算法验证,并开发可靠的原型软件实现。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Benchmarking of computational error-correction methods for next-generation sequencing data
  • DOI:
    10.1186/s13059-020-01988-3
  • 发表时间:
    2020-03-17
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
    Mitchell, Keith;Brito, Jaqueline J.;Mangul, Serghei
  • 通讯作者:
    Mangul, Serghei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksandr Zelikovskiy其他文献

Aleksandr Zelikovskiy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksandr Zelikovskiy', 18)}}的其他基金

Travel Support: 15th International Symposium on Bioinformatics Research and Applications
差旅支持:第十五届生物信息学研究与应用国际研讨会
  • 批准号:
    1923679
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
I-Corps: Software for the Next Generation Sequence Analysis for Homogeneous Populations
I-Corps:用于同质群体的下一代序列分析的软件
  • 批准号:
    1910957
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Travel Support: 12th International Symposium on Bioinformatics Research and Applications
差旅支持:第十二届生物信息学研究与应用国际研讨会
  • 批准号:
    1639612
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ABI Innovation: Collaborative Research: Computational framework for inference of metabolic pathway activity from RNA-seq data
ABI Innovation:协作研究:从 RNA-seq 数据推断代谢途径活性的计算框架
  • 批准号:
    1564899
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Travel Support: 11th International Symposium on Bioinformatics Research and Applications
差旅支持:第十一届生物信息学研究与应用国际研讨会
  • 批准号:
    1542617
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Travel Support: 7th International Symposium on Bioinformatics Research and Applications
差旅支持:第七届生物信息学研究与应用国际研讨会
  • 批准号:
    1116001
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Reconstruction of Haplotype Spectra from High-Throughput Sequencing Data
III:小:合作研究:从高通量测序数据重建单倍型谱
  • 批准号:
    0916401
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Directions for Advanced VLSI Manufacturability
合作研究:先进 VLSI 可制造性的新方向
  • 批准号:
    0429735
  • 财政年份:
    2004
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
  • 批准号:
    1814041
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: CIF: Small: Low Complexity Error Correction
CCF-BSF:AF:CIF:小:低复杂性纠错
  • 批准号:
    1814629
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Algorithms for Interactive Learning
CCF-BSF:AF:小型:交互式学习算法
  • 批准号:
    1813160
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
  • 批准号:
    1813374
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Convex and Non-Convex Distributed Learning
CCF-BSF:AF:小:凸和非凸分布式学习
  • 批准号:
    1718970
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了