Collaborative Research: Engineering of Recoverable Cellulosomes for Bioconversion

合作研究:用于生物转化的可回收纤维素体工程

基本信息

项目摘要

The sustainable, industrial-scale production of transportation biofuels from plant biomass rely on enzymes called cellulases that break down the cellulosic fraction of biomass into sugars that can be fermented into bioethanol. The major cost of this process is the cellulase, which in the current generation of cellulosic biofuel facilities, is discarded after use because it must be dissolved in water to break down cellulose to sugars, and cannot be easily recovered. Recycling the cellulase enzyme would reduce the cost of cellulosic biofuels production. The goal of this project is to develop a new way of encapsulating the cellulase enzyme in recoverable solid form so that it can be collected reused multiple times before disposal. The key innovation is to bind the cellulase enzyme to nanometer-sized capsule called a cellulosome, which preserves the activity of the enzyme for cellulose conversion, and has a magnetic core which facilitates its recovery from dilute water processing streams. The educational activities associated with this project include mentoring of undergraduate student projects coordinated through the Nurturing American Tribal Undergraduate Research and Education (NATURE) program at North Dakota State University.Microorganisms that naturally produce cellulase enzymes bind them into special structures on the cell surface called cellulosomes. Due to the close proximity of these enzymes within the cellulosomes, the bioconversion of cellulosic and hemicellulosic materials proceeds with a high velocity and efficiency. However, in the industrial production of celluloytic enzymes, the cellulosome is not present. This research will engineer recoverable cellulosomes through a biomimetic approach where celluloytic enzymes are encapsulated within a nanstructured capsule containing a magnetic core. This biomimetic cellulosome will contain a number of complimentary celluloytic enzymes confined within a polymeric environment, and will be engineered to mimic several key properties of natural cellulosomes, including diversity of hydrolytic activity, close proximity of complementary enzymes, and strong and selective binding of the biomimetic cellulosome to cellulosic substrates. The magnetic core of the biomimetic cellulosome will facilitate its recovery from liquid suspension using magnetic separation techniques. To explore the potential of the biomimetic cellulosome for biomass conversion processes, the research has four objectives. The first objective is to make a series of new biomimetic cellulosomes to enhance synergism of hydrolytic enzymes for bioconversion of cellulosic materials to sugars. The second objective is to quantify the effects of the biomimetic cellulosome structure and immobilized enzyme diversity on cellulose hydrolysis to gain a fundamental understanding of cellulase synergism in natural cellulosomes. The third objective is to gain a fundamental understanding of cellulosome interaction with cellulosic substrates and lignin, and the fourth objective is to augment the functionality of the biomimetic cellulosome for broader applications. The anticipated outcomes from these studies include a fundamental understanding of the synergism of enzymes in engineered cellulosomes, their efficacy for different forms of substrates, and their potential for recovery and reuse.
利用植物生物质以可持续、工业规模的方式生产运输生物燃料,依赖于一种称为纤维素酶的酶,这种酶将生物质的纤维素部分分解成可以发酵成生物乙醇的糖。 该过程的主要成本是纤维素酶,在当前一代的纤维素生物燃料设施中,纤维素酶在使用后被丢弃,因为它必须溶解在水中才能将纤维素分解为糖,并且不易回收。 回收纤维素酶将降低纤维素生物燃料的生产成本。 该项目的目标是开发一种以可回收固体形式封装纤维素酶的新方法,以便在处置前可以多次收集并重复使用。关键的创新是将纤维素酶结合到称为纤维素体的纳米尺寸胶囊上,该胶囊保留了纤维素转化酶的活性,并具有磁芯,有助于其从稀水处理流中回收。 与该项目相关的教育活动包括通过北达科他州立大学的培育美国部落本科生研究和教育 (NATURE) 计划协调本科生项目的指导。自然产生纤维素酶的微生物将它们结合到细胞表面上称为纤维素体的特殊结构中。 由于这些酶在纤维素体内非常接近,纤维素和半纤维素材料的生物转化以高速度和效率进行。 然而,在纤维素酶的工业生产中,不存在纤维素体。 这项研究将通过仿生方法设计可回收的纤维素体,其中纤维素酶被封装在含有磁芯的纳米结构胶囊内。 这种仿生纤维素体将包含许多限制在聚合物环境中的互补纤维素酶,并将被设计为模仿天然纤维素体的几个关键特性,包括水解活性的多样性、互补酶的紧密接近性以及仿生酶的强选择性结合纤维素体至纤维素底物。 仿生纤维素体的磁芯将有助于使用磁分离技术从液体悬浮液中回收。 为了探索仿生纤维素体在生物质转化过程中的潜力,该研究有四个目标。第一个目标是制造一系列新型仿生纤维素体,以增强水解酶的协同作用,将纤维素材料生物转化为糖。 第二个目标是量化仿生纤维素体结构和固定化酶多样性对纤维素水解的影响,以获得对天然纤维素体中纤维素酶协同作用的基本了解。 第三个目标是获得对纤维素体与纤维素底物和木质素相互作用的基本了解,第四个目标是增强仿生纤维素体的功能以实现更广泛的应用。 这些研究的预期结果包括对工程化纤维素体中酶的协同作用、它们对不同形式底物的功效以及它们回收和再利用的潜力的基本了解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergiy Minko其他文献

Single flexible hydrophobic polyelectrolyte molecules adsorbed on solid substrate: transition between a stretched chain, necklace-like conformation and a globule.
吸附在固体基质上的单个柔性疏水性聚电解质分子:拉伸链、项链状构象和球体之间的过渡。
Smart Microfluidic Channels
智能微流控通道
  • DOI:
    10.1002/adfm.200500562
  • 发表时间:
    2006-06-06
  • 期刊:
  • 影响因子:
    19
  • 作者:
    L. Ionov;N. Houbenov;A. Sidorenko;M. Stamm;Sergiy Minko
  • 通讯作者:
    Sergiy Minko
Advancing Biomedical Applications: Antioxidant and Biocompatible Cerium Oxide Nanoparticle-Integrated Poly-{\epsilon}- caprolactone Fibers
推进生物医学应用:抗氧化剂和生物相容性氧化铈纳米粒子集成聚-{epsilon}-己内酯纤维
  • DOI:
    10.1039/c8ra06792a
  • 发表时间:
    2024-04-26
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Ummay Mowshome Jahan;Brianna Blevins;Sergiy Minko;Vladimir Reukov
  • 通讯作者:
    Vladimir Reukov
A magneto-controlled biocatalytic cascade with a fluorescent output
  • DOI:
    10.1039/d1ob02313f
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ali Othman;Oleh Smutok;Yongwook Kim;Sergiy Minko;Artem Melman;Evgeny Katz
  • 通讯作者:
    Evgeny Katz
Enzyme-based logic systems interfaced with signal-responsive materials and electrodes
  • DOI:
    10.1039/c4cc09851j
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Evgeny Katz;Sergiy Minko
  • 通讯作者:
    Sergiy Minko

Sergiy Minko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergiy Minko', 18)}}的其他基金

EAGER: IMPRESS-U: High-throughput agile interfaces for cell sorting
EAGER:IMPRESS-U:用于细胞分选的高通量敏捷接口
  • 批准号:
    2401713
  • 财政年份:
    2024
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
PFI-TT: Non-enzymatic harvesting of cell cultures
PFI-TT:细胞培养物的非酶收获
  • 批准号:
    2141138
  • 财政年份:
    2022
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Reconfigurable Polymer Interfaces for Dynamic Interactions and Differentiation of Soft Colloids
用于软胶体动态相互作用和分化的可重构聚合物界面
  • 批准号:
    1904365
  • 财政年份:
    2019
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
State-of-the Art Conference: Magnetically Stimulated Soft Materials
最先进的会议:磁刺激软材料
  • 批准号:
    1534475
  • 财政年份:
    2015
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Collaborative Research: pH-Responsive capsules for Enhanced Delivery and Recovery of Cellulases for Biomass Hydrolysis
合作研究:用于增强生物质水解纤维素酶输送和回收的 pH 响应胶囊
  • 批准号:
    1426404
  • 财政年份:
    2014
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Remote Controlled Drug Delivery Material: Bio Catalytic Mechanisms of Drug Release Triggered by Magnetic Field
遥控给药材料:磁场触发药物释放的生物催化机制
  • 批准号:
    1426193
  • 财政年份:
    2013
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Continuing Grant
Remote Controlled Drug Delivery Material: Bio Catalytic Mechanisms of Drug Release Triggered by Magnetic Field
遥控给药材料:磁场触发药物释放的生物催化机制
  • 批准号:
    1309469
  • 财政年份:
    2013
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: pH-Responsive capsules for Enhanced Delivery and Recovery of Cellulases for Biomass Hydrolysis
合作研究:用于增强生物质水解纤维素酶输送和回收的 pH 响应胶囊
  • 批准号:
    0966526
  • 财政年份:
    2010
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Symposium: Hybrid Smart Micro and Nanoparticles
研讨会:混合智能微米和纳米粒子
  • 批准号:
    0946615
  • 财政年份:
    2009
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Forests of Magnetic Nanofibers for Liquid Transport and Manipulation
合作研究:用于液体运输和操纵的磁性纳米纤维森林
  • 批准号:
    0825832
  • 财政年份:
    2008
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant

相似国自然基金

基于中间带工程的非铅锑基钙钛矿薄膜制备及室内光伏性能研究
  • 批准号:
    12304043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于点云扫描规划的机电综合管线工程三维重建方法与施工质量智能检测研究
  • 批准号:
    52308311
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
工程化感觉神经在骨修复过程中自适应调控成骨/破骨平衡及其机制研究
  • 批准号:
    82372381
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
工程化细胞膜纳米囊泡兼具屏障穿越、肿瘤靶向和免疫调控功能用于胶质瘤免疫治疗研究
  • 批准号:
    82372106
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于肿瘤微环境响应表达IL-15减毒工程菌在肿瘤免疫治疗中的研究
  • 批准号:
    82303771
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Protein engineering and processing of plant viral templates for controlled nanoparticle synthesis
合作研究:用于受控纳米颗粒合成的植物病毒模板的蛋白质工程和加工
  • 批准号:
    2426065
  • 财政年份:
    2024
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323983
  • 财政年份:
    2024
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319896
  • 财政年份:
    2024
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 20.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了