TENSAR - Theory and Experiment for Nuclear Structure, Astrophysics & Reactions

TENSAR - 核结构、天体物理学的理论与实验

基本信息

  • 批准号:
    ST/Y000358/1
  • 负责人:
  • 金额:
    $ 303.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

For a hundred years, atomic nuclei have been probed more or less exclusively by studying collisions between stable beams and stable targets. This restricted the nuclei that could be studied to just a just a small fraction of those that are thought to exist. Most of the nuclei important to making all of the elements (in various stellar processes) have for example been inaccessible to experiment. The major thrust in nuclear physics worldwide, and a key priority in the UK's programme, is to reach out and study these exotic nuclei by using beams produced from short-lived radioactive isotopes. This in turn reveals that nuclear structure is not always like it seems to be for the stable nuclei, and nuclei are found to have surprising trends in stability and to have different shapes that will affect reaction rates inside stars and supernovae. At Surrey we take the UK priorities and the new opportunities very much to heart, and we seek out and lead programmes at the world's best facilities for making radioactive beams. These facilities - as well as the research effort - are international in scale. Surrey builds and runs innovative experimental equipment at these facilities. The present grant request is focused on the exploitation of the best capabilities at the best laboratories, with Surrey taking the leading role.Experimental progress is intimately linked with theory, and the development of novel and better theoretical approaches are a hallmark of the Surrey group. An outstanding feature of the group as a whole, which is key to our research plans and acknowledged as a rare and valuable strength, is our powerful blend of theoretical and experimental capability.Our science goals are aligned with current STFC strategy for nuclear physics as expressed in the STFC Nuclear Physics Advisory Panel's road map. We wish to understand the boundaries of nuclear existence, i.e. the limiting conditions that enable neutrons and protons to bind together to form nuclei. This limit is very sensitive to the properties of the nuclear force. It is unknown whether, and to what extent, the neutrons and protons can show different collective behaviour (driving to non-spherical shapes) or even how many neutrons can bind to a given number of protons. These features contribute to deciding how stars explode. To tackle these issues, we need to develop a more sophisticated understanding of the nuclear force, then we need more powerful theories that can build this understanding into the calculations, and we need experimental information about nuclei with unusual numbers of neutrons relative to protons so that we can test our theoretical ideas. Therefore, theory and experiment go hand-in-hand as we push forward towards the nuclear limits.An overview of nuclear binding reveals that about one half of predicted nuclei have never been observed, and the vast majority of this unknown territory involves nuclei with an excess of neutrons. Much of our activity addresses this "neutron rich" territory, exploiting the new capabilities made possible with radioactive beams and exploiting advances in computational power and analytical theories to bring superior new theoretical tools to bear on the latest observations. Our principal motivation is the basic science and the STFC "big questions", and we contribute strongly to the world sum of knowledge. The radiation-detector advances that our work drives can be incorporated in medical diagnosis and in environmental management. We engage strongly with the National Physical Laboratory on these topics. Our work also relates to national nuclear security and we have strong links in this area with AWE. We share staff and students with the NPL and with AWE. We provide excellent training for our research students and staff, many of whom go on to work in the nuclear power industry, helping to fill the current skills gap. Furthermore, we are enthusiastic about sharing our research, and actively pursue a public engagement agenda.
一百年来,通过研究稳定的梁和稳定靶标之间的碰撞或多或少地探测了原子核。这限制了可以研究的细胞核,只有一小部分被认为存在的核。例如,对于使所有元素(在各种恒星过程中)进行所有元素很重要的核,例如,实验无法访问。全世界核物理学的主要推力,也是英国计划的关键优先事项,是通过使用由短寿命的放射性同位素产生的光束来伸出并研究这些奇特核。反过来,这表明核结构并不总是像稳定的核一样,并且发现核的稳定性趋势令人惊讶,并且具有不同的形状,会影响恒星和超新星内部的反应速率。在萨里,我们将英国的优先事项和新的机会非常牢记,我们在世界上最佳的放射性束缚设施中寻找和领导计划。这些设施以及研究工作的规模是国际性的。萨里(Surrey)在这些设施上建造并运行创新的实验设备。目前的赠款要求集中在最佳实验室中最佳能力的剥削上,萨里担任领导角色。实验进步与理论紧密相关,而新颖和更好的理论方法的发展是苏里集团的标志。整个小组的一个杰出特征,这是我们研究计划的关键,并被认为是一种罕见而有价值的优势,是我们的理论和实验能力的强大融合。我们的科学目标与STFC核物理学咨询小组的路线图所示的当前STFC核物理策略保持一致。我们希望了解核存在的边界,即使中子和质子结合在一起形成核的限制条件。该极限对核力量的性质非常敏感。尚不清楚中子和质子在何种程度上可以显示出不同的集体行为(开车驱动非球形形状),甚至可以显示多少中子可以与给定数量的质子结合。这些功能有助于确定星星如何爆炸。为了解决这些问题,我们需要对核力量有更复杂的理解,然后我们需要更强大的理论,可以将此理解纳入计算中,并且我们需要有关与质子相对于质子数量异常数量中子的核的实验信息,以便我们可以测试我们的理论思想。因此,当我们向前朝着核极限前进时,理论和实验是手上的。核结合的概述表明,从未观察到大约一半的预测核,而且绝大多数该未知领土涉及中子过多的核。我们的大部分活动都解决了这个“中子富的”领域,利用了放射性梁使新功能成为可能,并利用了计算能力和分析理论的进步,以带来最新的新理论工具,以实现最新的观察。我们的主要动机是基础科学和STFC的“大问题”,我们为世界知识的总和做出了巨大贡献。辐射探测器的前进是,我们的工作驱动器可以纳入医学诊断和环境管理。我们就这些主题与国家物理实验室强烈互动。我们的工作也与国家核安全有关,我们在这一领域有着敬畏的联系。我们与NPL并敬畏地与员工和学生分享。我们为研究专业的学生和员工提供出色的培训,其中许多人继续在核电行业工作,有助于填补当前的技能差距。此外,我们热衷于分享我们的研究,并积极追求公众参与议程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilton Catford其他文献

Wilton Catford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilton Catford', 18)}}的其他基金

Advancing Nuclear Science via Theory and Experiment
通过理论和实验推进核科学
  • 批准号:
    ST/V001108/1
  • 财政年份:
    2021
  • 资助金额:
    $ 303.23万
  • 项目类别:
    Research Grant
Nuclear Physics at the Extremes: Theory & Experiment
极端核物理:理论
  • 批准号:
    ST/P005314/1
  • 财政年份:
    2017
  • 资助金额:
    $ 303.23万
  • 项目类别:
    Research Grant
TRIUMF travel for experiment S1107 with 24Na
使用 24Na 进行实验 S1107 的 TRIUMF 行程
  • 批准号:
    ST/I005866/1
  • 财政年份:
    2010
  • 资助金额:
    $ 303.23万
  • 项目类别:
    Research Grant
TRIUMF travel for experiment S1107
实验用TRIUMF旅行S1107
  • 批准号:
    ST/H003916/1
  • 财政年份:
    2009
  • 资助金额:
    $ 303.23万
  • 项目类别:
    Research Grant
TIARA - Surrey Emergency Bridging Funding
TIARA - 萨里紧急过渡资金
  • 批准号:
    PP/F000715/1
  • 财政年份:
    2007
  • 资助金额:
    $ 303.23万
  • 项目类别:
    Research Grant

相似国自然基金

二次冲击调控Richtmyer-Meshkov不稳定性的实验与理论研究
  • 批准号:
    12372281
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
激光探测碱金属大自旋原子磁共振系统动力学高维对称性的理论与实验研究
  • 批准号:
    12374330
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
内共振加强参激模式能量采集非线性动力学理论与实验研究
  • 批准号:
    12302010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
参照依赖偏好下的社会比较与个体行为:理论基础、实验设计、与政策分析
  • 批准号:
    72373083
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
片上微型声子晶体中拓扑点缺陷态的理论和实验研究
  • 批准号:
    12302112
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
  • 批准号:
    2334039
  • 财政年份:
    2024
  • 资助金额:
    $ 303.23万
  • 项目类别:
    Continuing Grant
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
  • 批准号:
    23K20272
  • 财政年份:
    2024
  • 资助金额:
    $ 303.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
  • 批准号:
    2334040
  • 财政年份:
    2024
  • 资助金额:
    $ 303.23万
  • 项目类别:
    Continuing Grant
Next Generation Experiment and Theory for Photoelectron Spectroscopy
下一代光电子能谱实验和理论
  • 批准号:
    EP/X026698/1
  • 财政年份:
    2023
  • 资助金额:
    $ 303.23万
  • 项目类别:
    Research Grant
REU Site: Integration of Chemical Theory, Computation and Experiment at Duquesne University
REU 网站:杜肯大学化学理论、计算和实验的整合
  • 批准号:
    2244151
  • 财政年份:
    2023
  • 资助金额:
    $ 303.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了