First-Principle Nuclear Structure and Reactions for Astrophysics and Experiments with Rare Isotope Beams

天体物理学和稀有同位素束实验的第一原理核结构和反应

基本信息

  • 批准号:
    2209060
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Following the history-making discovery of nuclear fission, which manifested the huge amount of energy that is released by breaking the strong bonds between neutrons and protons, nuclear physicists have searched for ever more comprehensive explanations of the properties of the atomic nucleus. Such advances are critical to predict exotic nuclei in processes under extreme conditions as stellar mergers and explosions, and to probe neutrino-related processes. The recent advent of radioactive beam facilities has enabled exotic-nuclei measurements, based on collisions of nuclei and their reactions. To predict inaccessible nuclei, these reactions must be well understood and modeled. However, exact solutions exist up to about five particles. The objective of this program is to expand dramatically the capabilities of nuclear reaction theory, by providing input to reaction simulations that is anchored in first principles but also can accommodate heavier nuclei and enhanced deformation. This is important for studies of the origin of elements, one of the biggest challenges in physics today, and has a wider impact since nuclear energy applications and national security research have similar needs. Future leaders (postdoc and students) are trained in low-energy nuclear science and petascale computing, while advancing a web-database for research and educational purposes.The overarching goal is to learn from and inform experiments at radioactive beam facilities, and to predict properties of experimentally inaccessible nuclei that are key to advancing our knowledge about astrophysical processes. The program focuses on improving reaction modeling by constructing the effective interaction between a target and a projectile from first principles (historically, referred to as an optical potential and fitted to experimental data), which now account for the challenging microscopic structure of the participating nuclei. As these interactions are an essential input to numerous reaction models that are currently in use, the new developments serve as an important tool in a broad spectrum of studies. The project capitalizes on a symmetry-guided approach that, by exploiting symmetries known to dominate the dynamics, has enabled ab initio investigations of heavier nuclear species, deformed or not. In this approach, all participating particles are treated on the same footing within a "shell model" picture, while employing chiral effective field theory interactions between protons and neutrons. The end products include calculations of beta decays in nuclei of enhanced deformation, and of reaction observables, e.g., cross sections for scattering, charge-exchange, and (d,p) reactions, of importance to astrophysics.This project advances the objectives of "Windows on the Universe: the Era of Multi-Messenger Astrophysics", one of the 10 Big Ideas for Future NSF Investments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
核裂变的历史性发现表明,中子和质子之间的强力键断裂会释放出巨大的能量,继这一发现之后,核物理学家一直在寻找对原子核性质的更全面的解释。这些进展对于预测恒星合并和爆炸等极端条件下过程中的奇异核以及探测中微子相关过程至关重要。最近出现的放射性束设施使得基于核碰撞及其反应的外来核测量成为可能。为了预测不可接近的核,必须很好地理解和建模这些反应。然而,精确解最多存在五个粒子。该计划的目标是通过为基于第一原理的反应模拟提供输入,显着扩展核反应理论的能力,但也可以适应更重的核和增强的变形。这对于元素起源的研究非常重要,元素起源是当今物理学最大的挑战之一,并且由于核能应用和国家安全研究有类似的需求,因此具有更广泛的影响。未来的领导者(博士后和学生)接受低能核科学和千万亿级计算方面的培训,同时推进用于研究和教育目的的网络数据库。总体目标是从放射性束设施的实验中学习并为实验提供信息,并预测特性实验上无法接近的原子核对于增进我们对天体物理过程的了解至关重要。该项目的重点是通过根据第一原理(历史上称为光学势并适合实验数据)构建目标和射弹之间的有效相互作用来改进反应模型,现在该原理解释了参与核的具有挑战性的微观结构。由于这些相互作用是当前使用的众多反应模型的重要输入,因此新的发展成为广泛研究的重要工具。该项目利用了一种对称引导的方法,通过利用已知的主导动力学的对称性,可以对较重的核素(无论是否变形)进行从头开始的研究。在这种方法中,所有参与的粒子都在“壳模型”图中以相同的基础进行处理,同时采用质子和中子之间的手性有效场论相互作用。最终产品包括增强形变核中 β 衰变的计算,以及反应可观测值的计算,例如对天体物理学很重要的散射、电荷交换和 (d,p) 反应的横截面。该项目推进了“ “宇宙之窗:多信使天体物理学时代”,被列为NSF未来投资十大创意之一。该奖项体现了NSF的法定使命,经评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ab initio symmetry-adapted emulator for studying emergent collectivity and clustering in nuclei
  • DOI:
    10.3389/fphy.2023.1064601
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. S. Becker;K. Launey;A. Ekstrom;T. Dytrych
  • 通讯作者:
    K. S. Becker;K. Launey;A. Ekstrom;T. Dytrych
Emergent symmetries in atomic nuclei: Probing nuclear dynamics and physics beyond the standard model
原子核中的涌现对称性:超越标准模型探索核动力学和物理学
  • DOI:
    10.21468/scipostphysproc.14.007
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Launey, Kristina D.;Becker, K. S.;Sargsyan, G. H.;Molchanov, O. M.;Burrows, M.;Mercenne, A.;Dytrych, T.;Langr, D.;Draayer, J. P.
  • 通讯作者:
    Draayer, J. P.
Ab initio single-neutron spectroscopic overlaps in lithium isotopes
  • DOI:
    10.1103/physrevc.108.054303
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    G. Sargsyan;K. Launey;R. Shaffer;S. Marley;N. Dudeck;A. Mercenne;T. Dytrych;J. Draayer
  • 通讯作者:
    G. Sargsyan;K. Launey;R. Shaffer;S. Marley;N. Dudeck;A. Mercenne;T. Dytrych;J. Draayer
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristina Launey其他文献

Kristina Launey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristina Launey', 18)}}的其他基金

Ab Initio Nuclear Structure and Reactions for Astrophysics and Neutrino Physics
天体物理学和中微子物理学的从头算核结构和反应
  • 批准号:
    1913728
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4: Ab initio modeling of nuclear reactions for studies of nucleosynthesis and fundamental symmetries in nature
RII Track-4:核反应从头开始建模,用于研究核合成和自然界的基本对称性
  • 批准号:
    1738287
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

手性液晶超结构的构筑原则与调控机制
  • 批准号:
    22373089
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
完全统计学习原则下的零经验风险记忆学习研究
  • 批准号:
    62366035
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
基于肌肉能量消耗最小化原则和肌肉协同的外骨骼助力效果优化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
毕赤酵母萜类合成模块化快速原型及设计原则
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
Dscam RNA二级结构抵消“先到先得”剪接原则的新机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study of non-spherical core-collapse supernovae by the first principle calculation and nuclear physics
基于第一性原理计算和核物理的非球形核心塌陷超新星研究
  • 批准号:
    20H01905
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of profile formation processes of fusion plasmas by first-principle turbulence calculations and machine learning modeling
通过第一性原理湍流计算和机器学习建模研究聚变等离子体的轮廓形成过程
  • 批准号:
    20K14450
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantitative prediction of plasma profile formation by first-principle simulation and machine learning
通过第一原理模拟和机器学习定量预测等离子体轮廓形成
  • 批准号:
    20K03907
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of global and dynamical plasma transport physics in 3D magnetic configuration based on first principle simulation
基于第一原理模拟的 3D 磁构型全局和动态等离子体输运物理研究
  • 批准号:
    19K03801
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
First-principle-based global simulation studies on turbulent transport and profile formations in burning plasmas
基于第一原理的燃烧等离子体中湍流传输和轮廓形成的全局模拟研究
  • 批准号:
    17K14899
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了