Digitization TCN: Collaborative Research: Lepidoptera of North America Network: Documenting Diversity in the Largest Clade of Herbivores

数字化 TCN:合作研究:北美鳞翅目网络:记录最大食草动物分支的多样性

基本信息

  • 批准号:
    1602081
  • 负责人:
  • 金额:
    $ 67.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Lepidoptera (butterflies and moths) are one of the most diverse groups of organisms on the planet: worldwide there are approximately 160,000 species, including around 14,300 species in North America. Moths and butterflies are a conspicuous component of terrestrial habitats and one of the most diverse groups of plant-feeding animals worldwide. This group insect includes species of great economic importance. Their juveniles feed on plants useful to humans, including grains, cotton, tobacco, and timber and shade trees. However, many of the adults are beneficial as pollinators and are icons of conservation as evidenced by Monarch butterflies. Given their economic importance and sheer beauty, butterflies and moths are one of the most abundant insect group in museum collections, but only a fraction of the approximately 15 million specimens in non-federal collections have had their specimen label information digitally recorded and accessible to researchers and educators. Of those specimens that have been digitized, fewer than 10% of the North American Lepidoptera species have sufficient, accessible occurrence data to make reliable predictions about habitat use, susceptibility to global change impacts, or other ecologically important interactions. This project will digitize and integrate existing, unconnected collections of lepidopterans to leverage the outstanding potential of this group of organisms for transformative research, training and outreach. The Lepidoptera of North America Network (LepNet) comprises 26 research collections that will digitize approximately 2 million specimen records and integrate these with over 1 million existing records. LepNet will digitize 43,280 larval vial records with host plant data, making this the first significant digitization of larvae in North American collections. LepNet will produce ca. 82,000 high-quality images of exemplar species covering 60% of North American lepidopteran species. These images will enhance remote identifications and facilitate systematic, ecological, and global change research. In collaboration with Visipedia, LepNet will create LepSnap, a computer vision tool that can provide automated identifications to the species level. Museum volunteers and student researchers equipped with smartphones will image 132,000 additional research-quality images through LepSnap. Up to 5,000 lepidopteran species will be elevated to a "research ready" status suitable for complex, data-driven analyses. LepNet will build on the existing data portal (SCAN) in consolidating data on Lepidoptera to the evolution of lepidopteran herbivores in North America. Access to these data will be increased through integration with iDigBio. Data for a broad range of research, including the evolutionary ecology of Lepidoptera and their host plants in the context of global change processes affecting biogeographic distributions will be generated. The LepXPLOR! program will spearhead education and outreach efforts for 67 existing programs, engaging a diverse, nationwide workforce of 400+ students and 3,500+ volunteers. Overall, LepNet will generate a sustainable social-research network dedicated to the creation and maintenance of a digital collection of North American Lepidoptera specimens (http://www.lep-net.org/).
鳞翅目(蝴蝶和飞蛾)是地球上最多样化的生物类群之一:全世界约有 160,000 种,其中北美约有 14,300 种。飞蛾和蝴蝶是陆地栖息地的重要组成部分,也是世界上最多样化的食草动物群体之一。该类昆虫包括具有重大经济意义的物种。它们的幼体以对人类有用的植物为食,包括谷物、棉花、烟草、木材和遮荫树。然而,许多成虫作为传粉者是有益的,并且是保护的象征,帝王蝶就是证明。鉴于其经济重要性和纯粹的美丽,蝴蝶和飞蛾是博物馆收藏中最丰富的昆虫类群之一,但非联邦收藏的约 1500 万个标本中,只有一小部分的标本标签信息以数字方式记录并可供研究人员访问和教育工作者。在这些已数字化的标本中,只有不到 10% 的北美鳞翅目物种拥有足够、可获取的发生数据,可以对栖息地利用、全球变化影响的敏感性或其他生态上重要的相互作用做出可靠的预测。该项目将对现有的、不相关的鳞翅目动物群进行数字化和整合,以利用该生物体的杰出潜力进行变革性研究、培训和推广。北美鳞翅目网络 (LepNet) 由 26 个研究馆藏组成,将把大约 200 万份标本记录数字化,并将这些记录与超过 100 万份现有记录整合起来。 LepNet 将利用寄主植物数据对 43,280 个幼虫瓶记录进行数字化,这是北美收藏品中首次对幼虫进行重要数字化。 LepNet 将产生大约。 82,000 张高质量样本图像,覆盖 60% 的北美鳞翅目物种。这些图像将增强远程识别并促进系统、生态和全球变化研究。 LepNet 将与 Visipedia 合作创建 LepSnap,这是一种计算机视觉工具,可以提供物种级别的自动识别。配备智能手机的博物馆志愿者和学生研究人员将通过 LepSnap 拍摄 132,000 张额外的研究质量图像。多达 5,000 种鳞翅目物种将被提升至“研究就绪”状态,适合复杂的数据驱动分析。 LepNet 将建立在现有数据门户 (SCAN) 的基础上,整合鳞翅目数据以了解北美鳞翅目食草动物的进化。通过与 iDigBio 集成,将增加对这些数据的访问。将生成广泛研究的数据,包括影响生物地理分布的全球变化过程背景下鳞翅目及其寄主植物的进化生态学。 LepXPLOR!该计划将带头开展 67 个现有计划的教育和推广工作,吸引全国 400 多名学生和 3,500 多名志愿者组成的多元化劳动力。总体而言,LepNet 将建立一个可持续的社会研究网络,致力于创建和维护北美鳞翅目标本的数字收藏 (http://www.lep-net.org/)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Cobb其他文献

Neil Cobb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Cobb', 18)}}的其他基金

Collaborative Research: Digitization TCN: iDigBees Network, Towards Complete Digitization of US Bee Collections to Promote Ecological and Evolutionary Research in a Keystone Clade
合作研究:数字化 TCN:iDigBees 网络,实现美国蜜蜂收藏的完全数字化,以促进重点进化枝的生态和进化研究
  • 批准号:
    2216927
  • 财政年份:
    2022
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    2209978
  • 财政年份:
    2021
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Testing Near-term Ecological Forecasting Throughout Emerging Extreme Drought
RAPID:合作研究:测试整个新兴极端干旱的近期生态预测
  • 批准号:
    1833505
  • 财政年份:
    2018
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Testing Near-term Ecological Forecasting Throughout Emerging Extreme Drought
RAPID:合作研究:测试整个新兴极端干旱的近期生态预测
  • 批准号:
    1833505
  • 财政年份:
    2018
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    1759966
  • 财政年份:
    2018
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant
Digitization TCN: Collaborative Research: Southwest Collections of Arthropods Network (SCAN): A Model for Collections Digitization to Promote Taxonomic and Ecological Research
数字化 TCN:合作研究:西南节肢动物馆藏网络 (SCAN):馆藏数字化促进分类学和生态学研究的模型
  • 批准号:
    1207371
  • 财政年份:
    2012
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant
CI-TEAM Implementation Project: Collaborative Research: Advancing Cyberinfrastructure-based Science through Education, Training, and Mentoring of Science Communities
CI-TEAM 实施项目:协作研究:通过科学界的教育、培训和指导推进基于网络基础设施的科学
  • 批准号:
    0753163
  • 财政年份:
    2008
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant
RCN: Drought Impacts on Regional Ecosystems Network (DIREnet): Coordinating Studies on Southwest Forests & Woodlands.
RCN:干旱对区域生态系统的影响网络(DIREnet):西南森林协调研究
  • 批准号:
    0443526
  • 财政年份:
    2005
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Continuing Grant
Ecological Study of the Alvord Basin Dune System, Southeastern Oregon
俄勒冈州东南部阿尔沃德盆地沙丘系统的生态研究
  • 批准号:
    7905328
  • 财政年份:
    1979
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant

相似国自然基金

转录因子TrTri6和TrTri10调控TCN合成影响粉红单端孢侵染苹果的分子机制
  • 批准号:
    32302619
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中国汉族人群糖尿病肾病易感基因TCN2功能及致病机制研究
  • 批准号:
    82370733
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
单端孢菌素(TCN)在粉红聚端孢侵染苹果中的致病机理研究
  • 批准号:
    31972220
  • 批准年份:
    2019
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
TCN2基因及其致病变异在麻风发病中的分子机制研究
  • 批准号:
    81601387
  • 批准年份:
    2016
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目
藏北双湖阿木岗日东西坡晚第四纪冰期序列重建与对比
  • 批准号:
    40771029
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Digitization TCN: iDigBees Network, Towards Complete Digitization of US Bee Collections to Promote Ecological and Evolutionary Research in a Keystone Clade
合作研究:数字化 TCN:iDigBees 网络,实现美国蜜蜂收藏的完全数字化,以促进重点进化枝的生态和进化研究
  • 批准号:
    2216932
  • 财政年份:
    2022
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Digitization TCN: iDigBees Network, Towards Complete Digitization of US Bee Collections to Promote Ecological and Evolutionary Research in a Keystone Clade
合作研究:数字化 TCN:iDigBees 网络,实现美国蜜蜂收藏的完全数字化,以促进重点进化枝的生态和进化研究
  • 批准号:
    2216934
  • 财政年份:
    2022
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Digitization TCN: iDigBees Network, Towards Complete Digitization of US Bee Collections to Promote Ecological and Evolutionary Research in a Keystone Clade
合作研究:数字化 TCN:iDigBees 网络,实现美国蜜蜂收藏的完全数字化,以促进重点进化枝的生态和进化研究
  • 批准号:
    2216946
  • 财政年份:
    2022
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Digitization TCN: iDigBees Network, Towards Complete Digitization of US Bee Collections to Promote Ecological and Evolutionary Research in a Keystone Clade
合作研究:数字化 TCN:iDigBees 网络,实现美国蜜蜂收藏的完全数字化,以促进重点进化枝的生态和进化研究
  • 批准号:
    2216953
  • 财政年份:
    2022
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Digitization TCN: iDigBees Network, Towards Complete Digitization of US Bee Collections to Promote Ecological and Evolutionary Research in a Keystone Clade
合作研究:数字化 TCN:iDigBees 网络,实现美国蜜蜂收藏的完全数字化,以促进重点进化枝的生态和进化研究
  • 批准号:
    2216927
  • 财政年份:
    2022
  • 资助金额:
    $ 67.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了