RAPID: Collaborative Research: Testing Near-term Ecological Forecasting Throughout Emerging Extreme Drought

RAPID:合作研究:测试整个新兴极端干旱的近期生态预测

基本信息

  • 批准号:
    1833505
  • 负责人:
  • 金额:
    $ 3.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-15 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

Tree die-off in response to drought, warmer temperatures, and pests and pathogens is occurring globally. These die-off events have altered forest and woodland ecosystems. This includes changes in water and energy fluxes and losses in ecosystem services in many areas. The ability to predict how forests will respond to drought is key for applying rapid land management actions to mitigate undesired outcomes. One goal of this research is to improve mortality predictions for pi?on pine (Pinus edulis) in response to drought. This will be achieved through a watering experiment and a regional survey during an emerging snow drought in the US Southwest. Multiple predictions of pi?on mortality in response to drought have already been developed. Another goal of this research is to use near-term ecological forecasting to test these different predictions. Throughout the drought, forecasts of the likelihood of tree mortality based on these different predictions will be done at intervals of 1 week to 1 year. This project will engage the public, land managers, and scientists through a website that is updated weekly with tree mortality forecasts. This project will develop and implement a teaching module to enhance undergraduate curricula and provide education training for a postdoctoral researcher. An emerging frontier of ecosystem science in the face of environmental change is to predict not just ecological responses to trends but to predict extreme ecological events to extreme climate events. Among the most important and extensive of such events is tree die-off in response to drought, warming and associated pests and pathogens. Although much research has focused simply on what exceeds thresholds for tree mortality, yielding numerous potential predictive relationships, none of these relationships have been tested with near-term ecological forecasting. Further, field experiments that have attempted to impose drought largely have been ineffective at improving predictions or testing near-term forecasts due to the challenges of effectively mimicking a severe drought or simultaneous mortality of treated and controls plots. There is thus a critical need for an experiment that takes advantage of a developing extreme drought to test multiple alternate hypotheses in a near-term ecological forecasting context. This project will rapidly implement experimental and monitoring measurements concurrent with the severe snow drought emerging across the southwestern US to test multiple predictions of tree mortality for pi?on pine (Pinus edulis), the most intensively studied tree species for drought-induced mortality. Near-term ecological forecasting will be updated at intervals of 1 week to 1 year throughout the drought, based on the frequency of available input data. Through improved mortality predictions and advancements in near-term ecological forecasting that can encompass extreme ecological events, this research will be a critical step towards developing forecasts that provide the information needed for rapid land management actions and account for longer-term implications such as carbon management.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于干旱、气温升高、害虫和病原体而导致的树木死亡正在全球范围内发生。这些死亡事件改变了森林和林地生态系统。这包括许多地区水和能量通量的变化以及生态系统服务的损失。预测森林如何应对干旱的能力是采取快速土地管理行动以减轻不良后果的关键。这项研究的目标之一是提高松树 (Pinus edulis) 因干旱而死亡的预测。这将通过在美国西南部出现雪旱期间进行浇水实验和区域调查来实现。已经对干旱造成的死亡人数进行了多种预测。这项研究的另一个目标是利用近期生态预测来测试这些不同的预测。在整个干旱期间,基于这些不同预测的树木死亡可能性的预测将每隔 1 周到 1 年进行一次。该项目将通过每周更新树木死亡率预测的网站吸引公众、土地管理者和科学家。该项目将开发和实施一个教学模块,以加强本科课程并为博士后研究员提供教育培训。 面对环境变化,生态系统科学的一个新兴前沿不仅是预测生态对趋势的反应,还预测极端生态事件对极端气候事件的影响。其中最重要和最广泛的事件是因干旱、变暖以及相关害虫和病原体而导致的树木死亡。尽管许多研究只是关注超过树木死亡率阈值的因素,从而产生了许多潜在的预测关系,但这些关系都没有经过近期生态预测的检验。此外,由于有效模拟严重干旱或处理和对照地块同时死亡的挑战,试图施加干旱的田间实验在很大程度上无法有效地改善预测或测试近期预测。因此,迫切需要进行一项实验,利用正在发生的极端干旱来测试近期生态预测背景下的多种替代假设。该项目将在美国西南部出现严重雪旱的同时迅速实施实验和监测测量,以测试对松树(Pinus edulis)树木死亡的多种预测,松树是对干旱引起的死亡研究最深入的树种。在整个干旱期间,近期生态预测将根据可用输入数据的频率每隔 1 周至 1 年更新一次。通过改进死亡率预测和涵盖极端生态事件的近期生态预测的进步,这项研究将成为制定预测的关键一步,为快速土地管理行动提供所需信息,并考虑碳管理等长期影响该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Dirty Dozen Ways to Die: Metrics and Modifiers of Mortality Driven by Drought and Warming for a Tree Species
十几种死亡方式:干旱和变暖导致树种死亡的指标和修正
  • DOI:
    10.3389/ffgc.2018.00004
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Breshears, David D.;Carroll, Charles J.;Redmond, Miranda D.;Wion, Andreas P.;Allen, Craig D.;Cobb, Neil S.;Meneses, Nashelly;Field, Jason P.;Wilson, Luke A.;Law, Darin J.;et al
  • 通讯作者:
    et al
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Cobb其他文献

Neil Cobb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Cobb', 18)}}的其他基金

Collaborative Research: Digitization TCN: iDigBees Network, Towards Complete Digitization of US Bee Collections to Promote Ecological and Evolutionary Research in a Keystone Clade
合作研究:数字化 TCN:iDigBees 网络,实现美国蜜蜂收藏的完全数字化,以促进重点进化枝的生态和进化研究
  • 批准号:
    2216927
  • 财政年份:
    2022
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    2209978
  • 财政年份:
    2021
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    1759966
  • 财政年份:
    2018
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
Digitization TCN: Collaborative Research: Lepidoptera of North America Network: Documenting Diversity in the Largest Clade of Herbivores
数字化 TCN:合作研究:北美鳞翅目网络:记录最大食草动物分支的多样性
  • 批准号:
    1602081
  • 财政年份:
    2016
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Continuing Grant
Digitization TCN: Collaborative Research: Southwest Collections of Arthropods Network (SCAN): A Model for Collections Digitization to Promote Taxonomic and Ecological Research
数字化 TCN:合作研究:西南节肢动物馆藏网络 (SCAN):馆藏数字化促进分类学和生态学研究的模型
  • 批准号:
    1207371
  • 财政年份:
    2012
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
CI-TEAM Implementation Project: Collaborative Research: Advancing Cyberinfrastructure-based Science through Education, Training, and Mentoring of Science Communities
CI-TEAM 实施项目:协作研究:通过科学界的教育、培训和指导推进基于网络基础设施的科学
  • 批准号:
    0753163
  • 财政年份:
    2008
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
RCN: Drought Impacts on Regional Ecosystems Network (DIREnet): Coordinating Studies on Southwest Forests & Woodlands.
RCN:干旱对区域生态系统的影响网络(DIREnet):西南森林协调研究
  • 批准号:
    0443526
  • 财政年份:
    2005
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Continuing Grant
Ecological Study of the Alvord Basin Dune System, Southeastern Oregon
俄勒冈州东南部阿尔沃德盆地沙丘系统的生态研究
  • 批准号:
    7905328
  • 财政年份:
    1979
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425429
  • 财政年份:
    2024
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了