Controlling the Conductivity of Nanocrystal Solids through their Surface Chemistry
通过表面化学控制纳米晶体固体的电导率
基本信息
- 批准号:1610412
- 负责人:
- 金额:$ 43.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project funded by the Macromolecular, Supramolecular and Nanochemistry program of the Chemistry Division, Professor Sean T. Roberts of the University of Texas at Austin and his graduate students study very small inorganic particles called semiconductor nanocrystals. Nanocrystals are tiny particles that contain thousands of atoms. While they are much larger than chemical molecules, which contain only a few atoms, they are still much smaller than solid materials that are large enough to see with the naked eye, containing trillions of atoms. Nanoscale materials are unique because they have sizes intermediate between molecules and solids, but sometimes have properties not easily predicted by averaging the two size extremes. The optical properties of these nanocrystals can be tuned by altering their size and shape, which makes them useful for applications such as displays, photovoltaic cells, and photodetectors. However, processing these materials into conductive thin films needed for electronics remains difficult. The researchers approach this challenge by combining the nanocrystals with surface-bound molecules designed to improve the electrical conductivity of nanocrystal thin films. The resulting structures are studied using spectroscopic techniques and photoconductivity measurements. This project also includes an outreach effort entitled GReen Energy At Texas (GREAT) designed to attract Community College students to the physical sciences by introducing them to green energy research. The specific goals of this project are to understand the key factors that facilitate electronic coupling between semiconductor nanocrystals and their surface ligands and to use interactions of this type to improve charge transport in nanocrystal optoelectronic films. The nature of the ligand can impact the bandgap and optical properties of semiconductor nanocrystals. This suggests some degree of electronic coupling between the nanocrystals and the ligands that involves charge transfer. This project quantitatively assesses the degree to which ligands facilitate charge transfer between nanocrystals in thin film. To accomplish this goal, time-resolved Raman spectroscopy is used to map charge density changes within nanocrystal ligand shells following photoexcitation. Two-dimensional electronic spectroscopy and photo-CELIV (charge extraction by linearly increasing voltage) measurements determine how exciton-delocalizing ligands (EDLs) modify charge carrier transport in nanocrystal thin films.
在这个由化学系高分子、超分子和纳米化学项目资助的项目中,德克萨斯大学奥斯汀分校的 Sean T. Roberts 教授和他的研究生研究了称为半导体纳米晶体的非常小的无机颗粒。 纳米晶体是含有数千个原子的微小颗粒。虽然它们比仅包含几个原子的化学分子大得多,但它们仍然比包含数万亿原子的大到足以用肉眼看到的固体材料小得多。纳米级材料是独特的,因为它们的尺寸介于分子和固体之间,但有时其特性无法通过平均两个极端尺寸轻易预测。这些纳米晶体的光学特性可以通过改变其尺寸和形状来调节,这使得它们可用于显示器、光伏电池和光电探测器等应用。然而,将这些材料加工成电子产品所需的导电薄膜仍然很困难。研究人员通过将纳米晶体与旨在提高纳米晶体薄膜的导电性的表面结合分子相结合来应对这一挑战。使用光谱技术和光电导测量来研究所得结构。该项目还包括一项名为“德克萨斯州绿色能源”(GREEN)的外展活动,旨在通过向社区学院学生介绍绿色能源研究来吸引他们接触物理科学。该项目的具体目标是了解促进半导体纳米晶体与其表面配体之间电子耦合的关键因素,并利用这种类型的相互作用来改善纳米晶体光电薄膜中的电荷传输。配体的性质会影响半导体纳米晶体的带隙和光学性质。这表明纳米晶体和配体之间存在一定程度的电子耦合,涉及电荷转移。该项目定量评估配体促进薄膜纳米晶体之间电荷转移的程度。为了实现这一目标,使用时间分辨拉曼光谱来绘制光激发后纳米晶体配体壳内的电荷密度变化图。二维电子光谱和光 CELIV(通过线性增加电压提取电荷)测量确定激子离域配体 (EDL) 如何改变纳米晶体薄膜中的载流子传输。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Achieving spin-triplet exciton transfer between silicon and molecular acceptors for photon upconversion
- DOI:10.1038/s41557-019-0385-8
- 发表时间:2020-02-01
- 期刊:
- 影响因子:21.8
- 作者:Xia, Pan;Raulerson, Emily K.;Roberts, Sean T.
- 通讯作者:Roberts, Sean T.
Charge carrier concentration dependence of ultrafast plasmonic relaxation in conducting metal oxide nanocrystals
- DOI:10.1039/c7tc00600d
- 发表时间:2017-06
- 期刊:
- 影响因子:6.4
- 作者:Robert W. Johns;Michelle A. Blemker;Michael S. Azzaro;S. Heo;Evan L. Runnerstrom;D. Milliron;S. Roberts
- 通讯作者:Robert W. Johns;Michelle A. Blemker;Michael S. Azzaro;S. Heo;Evan L. Runnerstrom;D. Milliron;S. Roberts
Exciton-Delocalizing Ligands Can Speed Up Energy Migration in Nanocrystal Solids
- DOI:10.1021/acs.nanolett.8b01079
- 发表时间:2018-05-01
- 期刊:
- 影响因子:10.8
- 作者:Azzaro, Michael S.;Dodin, Amro;Roberts, Sean T.
- 通讯作者:Roberts, Sean T.
Modulation of the Visible Absorption and Reflection Profiles of ITO Nanocrystal Thin Films by Plasmon Excitation
- DOI:10.1021/acsphotonics.9b01825
- 发表时间:2020-05-20
- 期刊:
- 影响因子:7
- 作者:Blemker, Michelle A.;Gibbs, Stephen L.;Roberts, Sean T.
- 通讯作者:Roberts, Sean T.
Can Exciton-Delocalizing Ligands Facilitate Hot Hole Transfer from Semiconductor Nanocrystals?
- DOI:10.1021/acs.jpcc.6b08178
- 发表时间:2016-12
- 期刊:
- 影响因子:3.7
- 作者:Michael S. Azzaro;Mark C. Babin;Shannon K. Stauffer;G. Henkelman;S. Roberts
- 通讯作者:Michael S. Azzaro;Mark C. Babin;Shannon K. Stauffer;G. Henkelman;S. Roberts
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Roberts其他文献
Poor Long-Term Efficacy of Prevnar-13 in Sickle Cell Disease Mice Is Associated with an Inability to Sustain Pneumococcal-Specific Antibody Titers
Prevnar-13 对镰状细胞病小鼠的长期疗效不佳与无法维持肺炎球菌特异性抗体滴度有关
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.7
- 作者:
S. Szczepanek;Sean Roberts;K. Rogers;C. Cotte;A. Adami;S. Bracken;S. Salmon;E. Secor;R. Thrall;B. Andemariam;D. Metzger - 通讯作者:
D. Metzger
Influenza Vaccination Protects Against Pandemic H1N1 Infection in Sickle Cell Disease Mice.
流感疫苗可预防镰状细胞病小鼠感染 H1N1 流感大流行。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.2
- 作者:
Sean Roberts;Dennis W Metzger;S. Szczepanek - 通讯作者:
S. Szczepanek
Sean Roberts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Roberts', 18)}}的其他基金
Causal approaches to investigating language evolution
研究语言演化的因果方法
- 批准号:
AH/T006927/1 - 财政年份:2021
- 资助金额:
$ 43.74万 - 项目类别:
Research Grant
MRI: Development of a Sub-diffraction Limited Microscope for Imaging Ultrafast Dynamics from the Visible to Mid-infrared Spectral Range
MRI:开发亚衍射有限显微镜,用于对可见光到中红外光谱范围的超快动态成像
- 批准号:
2019083 - 财政年份:2020
- 资助金额:
$ 43.74万 - 项目类别:
Standard Grant
Creating Functional Nanocrystal-Molecule Interfaces for Spin-triplet Energy Transfer
创建用于自旋三重态能量转移的功能纳米晶体分子界面
- 批准号:
2003735 - 财政年份:2020
- 资助金额:
$ 43.74万 - 项目类别:
Standard Grant
CAREER: Tracking Charge and Energy Transfer at Buried Organic Interfaces
职业:跟踪埋藏有机界面的电荷和能量转移
- 批准号:
1654404 - 财政年份:2017
- 资助金额:
$ 43.74万 - 项目类别:
Continuing Grant
Exciton Transport and Charge Separation in Organic Solar Cells Visualized with Interface Specific Femtosecond Spectroscopy
使用界面特定飞秒光谱可视化有机太阳能电池中的激子传输和电荷分离
- 批准号:
0937015 - 财政年份:2009
- 资助金额:
$ 43.74万 - 项目类别:
Standard Grant
相似国自然基金
超临界地热流体水岩作用过程及电导率演化规律
- 批准号:42372301
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
聚偏氟乙烯基固态电解质共晶及取向无定形结构调控及离子电导率研究
- 批准号:52373040
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高温高压下含水、含铁单斜辉石晶体结构和电导率研究
- 批准号:42302047
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高电导率的二维离子导体硫磷镉的构建及其光电催化合成氨反应性能研究
- 批准号:22308272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒边界电导率及机制研究:对地幔剪切带高电导异常的启示
- 批准号:42304109
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Electrical conductivity measurements of silicate melts at the Earth's mantle conditions
地幔条件下硅酸盐熔体的电导率测量
- 批准号:
24K17146 - 财政年份:2024
- 资助金额:
$ 43.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Overcoming the trade-off between thermopower and conductivity in transition metal oxides
职业生涯:克服过渡金属氧化物热电势和电导率之间的权衡
- 批准号:
2340234 - 财政年份:2024
- 资助金额:
$ 43.74万 - 项目类别:
Continuing Grant
CAREER: Manufacturing of Continuous Network Graphene-Copper Composites for Ultrahigh Electrical Conductivity
职业:制造具有超高导电性的连续网络石墨烯-铜复合材料
- 批准号:
2338609 - 财政年份:2024
- 资助金额:
$ 43.74万 - 项目类别:
Standard Grant
The role of BET proteins in pathological cardiac remodeling
BET蛋白在病理性心脏重塑中的作用
- 批准号:
10538142 - 财政年份:2023
- 资助金额:
$ 43.74万 - 项目类别:
Charge Transport in Symmetry Breaking Conjugated Molecular Materials: Experimental Approach by Conductivity Measurements under CPL Excitation
对称破缺共轭分子材料中的电荷传输:CPL 激励下电导率测量的实验方法
- 批准号:
23KF0045 - 财政年份:2023
- 资助金额:
$ 43.74万 - 项目类别:
Grant-in-Aid for JSPS Fellows