CAREER: Manufacturing of Continuous Network Graphene-Copper Composites for Ultrahigh Electrical Conductivity

职业:制造具有超高导电性的连续网络石墨烯-铜复合材料

基本信息

  • 批准号:
    2338609
  • 负责人:
  • 金额:
    $ 66.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2029-01-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant supports research to establish the basis of a new manufacturing technique for the fabrication of ultrahigh electrical conductivity materials. The research exploits the excellent electrical conductivity of graphene, an emerging two-dimensional (2D) carbon nanomaterial, within a pure copper matrix. Fundamental multiscale and multi-physics studies will be performed in order to understand the fabrication and properties of graphene-copper composites critical to the achievement of scientific and technological advancements in high conductivity materials. The availability of ultrahigh conductivity materials meets the ever-increasing demand for high performance electrical conductors in electric vehicles, portable devices, and power grids, which impacts various industries and, hence, the U.S. economy. New experimental methods will be developed for controlling the continuity of graphene networks within a copper matrix to achieve electrical conductivities significantly higher than that of pure copper. The manufacturing approach is generalizable to other carbon-metal composites consisting of low dimensional constituents within metal matrices for improved electrical and structural applications. This project provides interdisciplinary research, education, and training opportunities for high school students to postdoctoral researchers, ensuring participation from women and under-represented minority groups. Educational and research integration activities include developing modular demonstrations and laboratory tours for interactive teaching and learning experiences and offering new interdisciplinary courses and research programs. Carbon nanomaterials, such as carbon nanotube and graphene, have excellent electrical properties far exceeding those of pure metal conductors such as copper. To exploit these attractive properties, carbon nanomaterials are often dispersed in a copper matrix to fabricate carbon-copper composite conductors. However, these conductors suffer from low electrical performance due to the discontinuous interfaces between the dispersed nanocarbon materials and the copper matrix. This research project seeks to address these technical challenges by developing an innovative manufacturing technique involving chemical vapor deposition (CVD) and growth of continuous graphene films in a pre-compacted copper foam followed by a ‘gentle’ compression step. The ‘gentle’ compression ensures that the final densification of the graphene-coated copper foam occurs without damaging the continuous graphene films. This research aims to resolve fundamental questions about (1) the underlying mechanisms for the enhanced electrical properties of graphene-copper composites; (2) the role of the continuity of graphene networks in the composite on their overall material properties; and (3) size-dependent material behavior of the composite besides the direct effect of different graphene-to-copper volume ratios. Overcoming these technical challenges is essential for designing and manufacturing graphene-copper composite conductors with significantly enhanced electrical properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)资助支持研究,以建立用于制造超高导电率材料的新制造技术的基础。该研究利用了石墨烯(一种新兴的二维(2D)碳纳米材料)的优异导电性,将进行基本的多尺度和多物理研究,以了解石墨烯-铜复合材料的制造和性能,这对于实现高导电率材料的科学和技术进步至关重要。超高导电率材料的可用性满足了电动汽车、便携式设备和电网对高性能导电体不断增长的需求,这影响着各个行业,因此,美国经济将开发新的实验方法来控制导电的连续性。该制造方法可推广到由金属基体中的低维成分组成的其他碳金属复合材料,以改善电气和结构应用。为高中生和博士后研究人员提供跨学科研究、教育和培训机会,确保妇女和代表性不足的少数群体的参与。教育和研究整合活动包括开发模块化演示和实验室参观,以实现互动式教学和学习体验,并提供新的跨学科课程。碳纳米材料(例如碳纳米管和石墨烯)具有远远超过纯金属导体(例如铜)的优异电性能,为了利用这些有吸引力的特性,碳纳米材料通常分散在铜基体中以制造碳-铜。然而,由于分散的纳米碳材料和铜基体之间的不连续界面,这些导体的电气性能较低,该研究项目旨在通过开发涉及化学气相沉积(CVD)和铜基体的创新制造技术来解决这些技术挑战。在预压实的铜泡沫中生长连续石墨烯薄膜,然后进行“温和”压缩步骤,“温和”压缩确保了石墨烯涂覆的铜泡沫的最终致密化,而不会损坏连续石墨烯薄膜。旨在解决以下基本问题:(1)增强石墨烯-铜复合材料电性能的基本机制;(2)复合材料中石墨烯网络的连续性对其整体材料性能的作用;以及(3)尺寸依赖性;除了不同石墨烯与铜的体积比的直接影响之外,克服这些技术挑战对于设计和制造具有显着增强的电性能的石墨烯-铜复合导体至关重要。该奖项反映了 NSF 的法定使命,并被认为是。值得通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wonmo Kang其他文献

Topographical depth reveals contact guidance mechanism distinct from focal adhesion confinement.
地形深度揭示了与粘着斑限制不同的接触引导机制。
  • DOI:
    10.1002/cm.21810
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    M. Robitaille;Chunghwan Kim;J. Christodoulides;Patrick J Calhoun;Wonmo Kang;Jinny Liu;Jeff M. Byers;M. Raphael
  • 通讯作者:
    M. Raphael
A 3D printed tensile testing system for micro-scale specimens.
用于微型样品的 3D 打印拉伸测试系统。
  • DOI:
    10.1063/5.0172671
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    W. J. Choi;Christopher Rudolf;Hamid Safari;M. F. Riyad;Maxwell Kulak;Junghoon Yeom;Wonmo Kang
  • 通讯作者:
    Wonmo Kang

Wonmo Kang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

数字制造业集聚对供应链中断的缓冲机制研究
  • 批准号:
    72303034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
创新链管理视角下高端装备制造业开放创新的风险识别、评估与治理对策研究
  • 批准号:
    72304262
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数字技术驱动制造业低碳转型的失效机制与破解路径:基于数字技术承接力的视角
  • 批准号:
    72304087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中国西部城市不同所有制制造业企业的全球主动嵌入:全球网络、行业差异和安全评估
  • 批准号:
    42371198
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
复合系统视阈下制造业绿色转型的演化机理、绩效评价及调控策略研究
  • 批准号:
    72373138
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
  • 批准号:
    2422696
  • 财政年份:
    2024
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Integrated Cyber-Physical Resilience of Continuous Critical Manufacturing
职业:了解连续关键制造的集成网络物理弹性
  • 批准号:
    2338968
  • 财政年份:
    2024
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Standard Grant
Quantum Dot synthesis in Continuous Flow via Self-Optimising Nanoscale Manufacturing Platforms
通过自优化纳米级制造平台在连续流中合成量子点
  • 批准号:
    2783323
  • 财政年份:
    2023
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Studentship
Enabling Continuous Manufacturing of mRNA Vaccines
实现 mRNA 疫苗的连续生产
  • 批准号:
    2868915
  • 财政年份:
    2023
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Studentship
Prosperity Partnership in Innovative Continuous Manufacturing for Industrial Chemicals (IConIC)
工业化学品创新连续制造繁荣合作伙伴关系 (IConIC)
  • 批准号:
    EP/X025292/1
  • 财政年份:
    2023
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了