OP: High Power Widely Tunable Fiber Lasers for Nonlinear Optical Microscopy

OP:用于非线性光学显微镜的高功率宽范围可调谐光纤激光器

基本信息

  • 批准号:
    1610048
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Development of high power widely tunable fiber lasers for nonlinear optical microscopy of cancer and brain tissuesNontechnical descriptionThis research program will seek to improve the performance of ultrafast laser sources based on fiber format by extending the operating wavelength to new regions. A successful outcome of this program will allow the development of useful instruments with new capabilities through the use of widely tunable wavelengths, energetic, and ultrashort optical pulses. These instruments will have transformative impact on the biomedical imaging and research community by providing advanced capabilities such as on-demand wavelength tuning, access to difficult spectral regions, synchronized ultrafast laser pulses for pump/probe spectroscopy. From an educational perspective, this research will allow the PI to educate PhD graduates in the fields of Ultrafast Lasers and Fiber Lasers through the established educational programs at the College of Optical Sciences, The University of Arizona. Graduate education will be further improved by incorporating the research results into two graduate courses. In future as in previous summer months, undergraduate students will be involved in research on ultrafast fiber lasers and their applications. The PI will involve students from underrepresented groups (Native Americans, women) in his research through year round mentoring and internships, and by participating in various NSF funded outreach programs such as "Optical Sciences summer Camp", "Hooked on Photonics", "Integrated Optics for Undergraduates", and "Research Experience for Teachers"Technical descriptionThe purpose of this project is to investigate high performance widely tunable synchronously pumped ultrafast fiber optical parametric oscillators exhibiting new pulse evolutions in the cavity. The combination of standard optical gain and parametric interaction in a single laser cavity not only opens route to high output power operation but also gives rise to new dynamics never studied before. The project will address a number of key issues that currently prevent this laser platform from becoming suitable for nonlinear microscopy application. The specific goals of this proposal are: 1) Develop compact and robust ultrafast fiber lasers that can replace expensive and bulky Ti:sapphire femtosecond laser; 2) Generate ultrafast laser wavelengths not currently available commercially (in fiber format) such as 1300 nm and 1700 nm which are important for deep tissue multiphoton imaging; 3) Characterize and test the developed laser sources on real applications including cancer and brain imaging. This project will provide the first systematic study of ultrafast fiber optical parametric oscillators both experimentally and theoretically. The research will enable new high power fiber lasers working at important wavelength gaps that current state-of-the-art fiber laser technology cannot provide. Recently, fiber lasers based on traditional gain media operating in normal dispersion regime with self-similar pulse-shaping have been introduced. This has enabled fiber lasers to achieve high energy, high power, and low noise performance surpassing that of other solid-state lasers based on crystals and free-space optics. We have shown that fiber optical parametric oscillators can be designed to work in self-similar regime. The self-similar evolution opens new routes to create compact and robust optical parametric oscillators with very broad wavelength tuning and high output power level suitable for nonlinear optical microscopy and a range of other applications such as 3D writing, pump/probe spectroscopy, frequency comb metrology.
开发高功率可调的纤维激光器,用于非线性光学显微镜的癌症和脑组织非技术技术描述,该研究计划将寻求通过将工作波长扩展到新区域,从而改善基于纤维格式的超快激光源的性能。该程序的成功结果将通过使用广泛可调的波长,充满活力和超短光脉冲来开发具有新功能的有用仪器。这些仪器将通过提供高级功能,例如按需波长调整,进入困难的光谱区域,同步超快激光脉冲来对生物医学成像和研究社区产生变革性的影响。从教育的角度来看,这项研究将使PI能够通过亚利桑那大学光学科学学院的既定教育计划来教育超快激光器和光纤激光器领域的博士学位毕业生。通过将研究结果纳入两个研究生课程,将进一步改善研究生教育。在将来与上夏季一样,本科生将参与有关超快纤维激光器及其应用的研究。 PI将通过全年的指导和实习,并参与各种NSF资助的外展计划,例如“光学科学夏令营”,“挂在光子学上”,“挂在光子学上”,“在本科生的综合效果”中,“在“光学上的光学学”中,“兴奋不已”的研究效果是,“在“光学上”的研究经验是,“较高的效果”是,“在较高的研究经验中,” PROPATION调查了该项目的高位,这是“兴奋不已”,PI将涉及众多代表性群体(美洲原住民,妇女)的学生参与他的研究。光学参数振荡器在腔中表现出新的脉冲演变。单个激光腔中标准光学增益和参数相互作用的组合不仅打开了高输出功率操作的途径,而且还引起了以前从未研究过的新动力学。该项目将解决许多关键问题,这些问题当前阻止此激光平台适合非线性显微镜应用。该提案的具体目标是:1)开发紧凑而健壮的超快纤维激光器,可以取代昂贵且笨重的Ti:Sapphire septsecond Laser; 2)产生超快激光波长当前在商业上(以纤维格式)(例如1300 nm和1700 nm)产生,这对于深层组织多光子成像很重要; 3)在包括癌症和脑成像在内的实际应用中表征和测试开发的激光源。该项目将在实验和理论上提供对超快光纤参数振荡器的首次系统研究。该研究将使新的高功率光纤激光器能够在当前最新的纤维激光器技术无法提供的重要波长差距上工作。最近,已经引入了基于传统增益介质在正常分散体制中运行的传统增益介质的纤维激光器,并引入了自相似脉冲成型。这使纤维激光器能够获得基于晶体和自由空间光学器件的其他固态激光器的高能量,高功率和低噪声性能。我们已经表明,光纤参数振荡器可以设计用于自相似度。自相似的进化开放了新的路线,以创建非常宽的波长调谐和高输出功率水平的紧凑和鲁棒的光学参数振荡器,适用于非线性光学显微镜以及其他一系列其他应用,例如3D编写,泵/探针光谱谱图,频率梳子元学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khanh Kieu其他文献

High Power Soliton Self-Frequency Shift With Improved Flatness Ranging From 1.6 to 1.78 μm
  • DOI:
    10.1109/lpt.2013.2279239
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Thanh Nam Nguyen;Khanh Kieu;Peyghambarian, Nasser
  • 通讯作者:
    Peyghambarian, Nasser
Design of a 1.0mm multiphoton microscopy microendoscope
1.0mm多光子显微内窥镜的设计
  • DOI:
    10.1117/12.3001732
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zuzana Adams;Zhihan Hong;Lynette K. Valenzuela;Piaoran Ye;Rongguang Liang;Khanh Kieu;Jennifer K. Barton
  • 通讯作者:
    Jennifer K. Barton
All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification
  • DOI:
    10.1364/oe.384185
  • 发表时间:
    2020-01-20
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Qin, Yukun;Batjargal, Orkhongua;Khanh Kieu
  • 通讯作者:
    Khanh Kieu
Characterization of multiphoton microscopes by the nonlinear knife-edge technique
  • DOI:
    10.1364/ao.391881
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Mehravar, Soroush;Cromey, Benjamin;Khanh Kieu
  • 通讯作者:
    Khanh Kieu

Khanh Kieu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khanh Kieu', 18)}}的其他基金

OP: Collaborative Research: Multimodal Molecular Spectroscopy and Imaging in Biological Tissue and Historical Artwork
OP:合作研究:生物组织和历史艺术品中的多模态分子光谱和成像
  • 批准号:
    1609983
  • 财政年份:
    2016
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Generation and Manipulation of New Sources in 20-60 micron on a Chip
合作研究:EAGER:在芯片上生成和操纵 20-60 微米的新光源
  • 批准号:
    1644659
  • 财政年份:
    2016
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant

相似国自然基金

主体异质性视角下国家战略科技力量推进关键核心技术创新的效应、路径与对策研究
  • 批准号:
    72304276
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
社交媒体下基于力量不均衡的网络欺凌感知技术研究
  • 批准号:
    62302223
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于切平面受限Power图的快速重新网格化方法
  • 批准号:
    62372152
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
极端天气下电热能量网络容灾能力量化评估与韧性提升策略
  • 批准号:
    62303182
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
多维度参数耦合废锂离子电池循环利用过程降碳潜力量化评价方法
  • 批准号:
    52300232
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 32万
  • 项目类别:
    Studentship
Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
  • 批准号:
    MR/Y011686/1
  • 财政年份:
    2025
  • 资助金额:
    $ 32万
  • 项目类别:
    Fellowship
CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
  • 批准号:
    2337598
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Conference: Global Bioinformatics Education Summit 2024 — Energizing Communities to Power the Bioeconomy Workforce
会议:2024 年全球生物信息学教育峰会 — 激励社区为生物经济劳动力提供动力
  • 批准号:
    2421267
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了