Submanifolds and Metrics in Contact Geometry

接触几何中的子流形和度量

基本信息

  • 批准号:
    1608684
  • 负责人:
  • 金额:
    $ 31.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Contact structures on manifolds are natural objects, born over two centuries ago, in the work of Huygens, Hamilton, and Jacobi, on geometric optics. They have been studied by many mathematicians and seem to touch on diverse areas of mathematics and physics, but only in the last few decades have they moved into the foreground of mathematics. This is due to the remarkable breakthroughs in contact topology, resulting in a rich and beautiful theory with many applications. Studying subsets and their interactions with such structures was instrumental in the understanding of three-dimensional spaces, and it led to profound progress. The Principal Investigator will now extend this to higher dimensions, where this exploration is likely to prove equally illuminating. The Principal Investigator will also continue to study properties of contact structures on low-dimensional spaces and their interaction with topology and Riemannian geometry, and he will train the next generation of researchers by working with a large group of graduate students and organizing conferences and seminars.The research supported by this award will focus on problems centered around three broad topics: the interactions of contact geometry and topology in low dimensions, properties and constructions of contact manifolds in higher dimensions, and connections between contact geometry and the more familiar Riemannian geometry. In low dimensions the main motivating question is to determine which three-manifolds admit a tight contact structure. Currently quite a bit is known about this question, but very little is known about it for hyperbolic homology spheres. This problem will be studied using a variety of techniques, from convex surfaces, to holomorphic curves and Riemannian geometry. In addition, understanding interactions between various properties a contact structure can have will be studied. While much is known about contact geometry in low dimensions, there is very little known in higher dimensions. The principal investigator will study constructions and properties of high-dimensional contact manifolds. The starting point for this will be the study of isotropic and contact submanifolds of contact manifolds. Such considerations have led to a wealth of information in low-dimensions and it is expected to be similarly fruitful in higher dimensions as well. In the past few years there have been some interesting and subtle connections between contact geometry and Riemannian geometry. The Principal Investigator will explore this further hoping to find contact geometric analogs of classical results relating topology to Riemannian geometry.
歧管上的接触结构是自然物体,出生于两个世纪前,在Huygens,Hamilton和Jacobi在几何光学方面的作品中。许多数学家都对他们进行了研究,并且似乎涉及数学和物理学的各个领域,但是只有在过去的几十年中,他们才进入数学的前景。这是由于接触拓扑中的显着突破,从而带来了许多应用的丰富而美丽的理论。研究子集及其与此类结构的相互作用对三维空间的理解起着重要作用,这导致了深刻的进步。主要研究人员现在将其扩展到更高的维度,在此探索可能同样启发时。首席研究者还将继续研究接触结构在低维空间上的特性及其与拓扑结构和riemannian几何形状的相互作用,他将通过与大量的研究生合作以及组织会议和研讨会来培训下一代研究人员。该奖项支持的研究将集中于围绕三个广泛主题的问题:在较高维度的低维度,属性和构造中的接触几何学和拓扑之间的相互作用,以及接触几何形状与更熟悉的Riemannian几何形状之间的联系。在低维度中,主要的激励问题是确定哪种三序列的接触结构紧密。目前,对这个问题有很多了解,但是对于双曲线同源性领域知之甚少。从凸表面到全态曲线和riemannian几何形状,将使用多种技术研究此问题。此外,将研究了解触点结构之间的各种属性之间的相互作用。虽然对低维度的接触几何形状知之甚少,但在较高的维度中鲜为人知。主要研究者将研究高维接触歧管的结构和特性。此的起点将是对触点歧管的各向同性和接触式子延伸的研究。这些考虑因素导致了低维度的大量信息,预计它在更高的维度也将同样富有成果。在过去的几年中,接触几何形状与黎曼几何形状之间存在一些有趣而微妙的联系。首席研究者将探索这一进一步的希望,以找到与拓扑结构与Riemannian几何形状有关的经典结果的接触几何类似物。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symplectic hats
  • DOI:
    10.1112/topo.12258
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    John B. Etnyre;Marco Golla
  • 通讯作者:
    John B. Etnyre;Marco Golla
Legendrian contact homology in $\mathbb{R}^3$
$mathbb{R}^3$ 中的传奇接触同源性
  • DOI:
    10.4310/sdg.2020.v25.n1.a4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Etnyre, John B.;Ng, Lenhard L.
  • 通讯作者:
    Ng, Lenhard L.
On 3-manifolds that are boundaries of exotic 4-manifolds
在作为奇异 4 流形边界的 3 流形上
Contact surgery and symplectic caps
接触手术和辛帽
Knot Colorings: Coloring and Goeritz Matrices
结着色:着色和 Goeritz 矩阵
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Etnyre其他文献

The arc complex and contact geometry: non-destabilizable planar open book decompositions of the tight contact 3-sphere
圆弧复形和接触几何:紧密接触 3 球面的不可失稳平面开卷分解
Constraints on families of smooth 4 –manifolds from Pin (cid:0) . 2 / –monopole
来自 Pin (cid:0) 的平滑 4 –流形族的约束。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. O. K. Onno;N. O. N. Akamura;John Etnyre;Kathryn Hess;Fred Cohen;J. Elisenda;Grigsby Boston;Jérôme Scherer;École Polytech;Féd;de Lausanne
  • 通讯作者:
    de Lausanne
2 3 O ct 2 00 4 Table of Contents for the Handbook of Knot Theory
2 3 Oct 2 00 4 纽结理论手册目录
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Menasco;M. Thistlethwaite;Colin Adams;Greg Buck;J. Birman;Tara Brendle;John Etnyre
  • 通讯作者:
    John Etnyre
T G Algebraic & Geometric Topology
TG 代数
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Etnyre;Kathryn Hess;Steven Boyer;Robert Lipshitz;Jérôme Scherer;École Polytech;Féd;de Lausanne
  • 通讯作者:
    de Lausanne
A T G Algebraic & Geometric Topology
ATG 代数
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. O. Y. Ang;John Etnyre;Kathryn Hess;Steven Boyer;Robert Lipshitz;Jérôme Scherer;École Polytech;Féd;de Lausanne
  • 通讯作者:
    de Lausanne

John Etnyre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Etnyre', 18)}}的其他基金

Conference: Tech Topology Summer School 2023
会议:2023 年技术拓扑暑期学校
  • 批准号:
    2316093
  • 财政年份:
    2023
  • 资助金额:
    $ 31.76万
  • 项目类别:
    Standard Grant
Conference: Tech Topology Conference at Georgia Tech
会议:佐治亚理工学院技术拓扑会议
  • 批准号:
    2333152
  • 财政年份:
    2023
  • 资助金额:
    $ 31.76万
  • 项目类别:
    Standard Grant
Surgery in Contact Geometry
接触几何外科手术
  • 批准号:
    2203312
  • 财政年份:
    2022
  • 资助金额:
    $ 31.76万
  • 项目类别:
    Continuing Grant
Submanifolds and Cobordisms in Contact and Symplectic Topology
接触拓扑和辛拓扑中的子流形和配边
  • 批准号:
    1906414
  • 财政年份:
    2019
  • 资助金额:
    $ 31.76万
  • 项目类别:
    Continuing Grant
The Topology and Geometry of Low-dimensional Manifolds
低维流形的拓扑和几何
  • 批准号:
    1832173
  • 财政年份:
    2018
  • 资助金额:
    $ 31.76万
  • 项目类别:
    Standard Grant
RTG: Research Training in Geometry and Topology
RTG:几何和拓扑研究培训
  • 批准号:
    1745583
  • 财政年份:
    2018
  • 资助金额:
    $ 31.76万
  • 项目类别:
    Continuing Grant
Contact Topology in Dimension Three and Higher, July 28 - August 1, 2014
第三维及更高维度的接触拓扑,2014 年 7 月 28 日至 8 月 1 日
  • 批准号:
    1432918
  • 财政年份:
    2014
  • 资助金额:
    $ 31.76万
  • 项目类别:
    Standard Grant
Contact geometry in dimensions high and low
高尺寸和低尺寸的接触几何形状
  • 批准号:
    1309073
  • 财政年份:
    2013
  • 资助金额:
    $ 31.76万
  • 项目类别:
    Continuing Grant
Tech Topology Conference II
技术拓扑会议II
  • 批准号:
    1259098
  • 财政年份:
    2012
  • 资助金额:
    $ 31.76万
  • 项目类别:
    Standard Grant
Contact Geometry, Contact Homology and Open Book Decompositions
接触几何、接触同调和开卷分解
  • 批准号:
    0804820
  • 财政年份:
    2008
  • 资助金额:
    $ 31.76万
  • 项目类别:
    Continuing Grant

相似国自然基金

TBM掘进机构环境适应性设计理论与方法研究
  • 批准号:
    51675180
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
新型并联式六维力传感器设计理论与测量性能研究
  • 批准号:
    51505124
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
矽肺的个体矽尘接触和效应的预警值研究
  • 批准号:
    81372966
  • 批准年份:
    2013
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
基于轮轨接触几何状态的地震作用下高速列车过桥安全性指标研究
  • 批准号:
    51208027
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
岩浆接触变质带煤的物性特征与瓦斯突出效应研究
  • 批准号:
    40872103
  • 批准年份:
    2008
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Cell-type and whole-brain dynamics underlying operant social stress resiliency
操作性社会压力弹性背后的细胞类型和全脑动力学
  • 批准号:
    10676636
  • 财政年份:
    2023
  • 资助金额:
    $ 31.76万
  • 项目类别:
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
  • 批准号:
    RGPIN-2017-05596
  • 财政年份:
    2022
  • 资助金额:
    $ 31.76万
  • 项目类别:
    Discovery Grants Program - Individual
The effects of cumulative concussion, repetitive head impacts, and comorbid cardiovascular risk factors on MRI metrics of pathological aging and neurobehavioral functioning across the lifespan
累积性脑震荡、重复性头部撞击和合并心血管危险因素对整个生命周期病理性衰老和神经行为功能的 MRI 指标的影响
  • 批准号:
    10282566
  • 财政年份:
    2021
  • 资助金额:
    $ 31.76万
  • 项目类别:
The effects of cumulative concussion, repetitive head impacts, and comorbid cardiovascular risk factors on MRI metrics of pathological aging and neurobehavioral functioning across the lifespan
累积性脑震荡、重复性头部撞击和合并心血管危险因素对整个生命周期病理性衰老和神经行为功能的 MRI 指标的影响
  • 批准号:
    10651801
  • 财政年份:
    2021
  • 资助金额:
    $ 31.76万
  • 项目类别:
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
  • 批准号:
    RGPIN-2017-05596
  • 财政年份:
    2021
  • 资助金额:
    $ 31.76万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了