Surgery in Contact Geometry
接触几何外科手术
基本信息
- 批准号:2203312
- 负责人:
- 金额:$ 63.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will focus on several central questions in low dimensional contact topology. Contact topology studies a geometric structure on odd dimensional manifolds, called a contact structure, that over the last twenty to thirty years has been shown to have deep connections with three and four dimensional spaces. The Principal Investigator will continue his work classifying contact structures in dimension three and some special subsets of them called Legendrian knots. In addition he will investigate how properties of these structures interact and relate to a more familiar type of geometry called Riemannian geometry. The PI will also continue his commitment to the education of undergraduate and graduate students and postdoctoral fellows. He will organize conferences and workshops, and be a managing editor for “Algebraic and Geometric Topology”, as well as begin a book project to provide a comprehensive resource for certain key techniques in contact geometry.The Principal Investigator will investigate contact and symplectic structures through a variety of techniques, but focusing on surgery techniques and connections to Riemannian metrics. In dimension three understanding Legendrian and transverse knots in a contact manifold has gone hand in hand with advances in our understanding of contact structures and their subtle links with topology. The Principal Investigator will continue his investigations of such knots in three manifolds, focusing on qualitative features of them as well as classification results in novel situations. He will study how various properties of a contact structure, such as Giroux torsion, fillability, and virtual overtwistedness, behave under surgery. The Principal Investigator will also start a project to classify contact structures on all small Seifert fibered spaces (and some large ones) and study their contact geometric properties. Riemannian metrics have long been known to have deep connections with the smooth topology of manifolds and more recently it has been shown that contact structures do as well. The Principal Investigator will continue to explore relations between these two geometric structures with the goal of seeing key properties of a contact structure (such as tightness) reflected in Riemannian metrics that are adapted to them. This will hopefully lead to a more complete understanding of the general picture of contact structures on 3 manifolds and create new tools for studying higher dimensional contact manifolds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将集中于低维拓扑的几个造型。除了这些结构的特性如何与更熟悉的几何形状相关联,他们的某些子集也将对研究生和博士后研究员进行教育,并将其交往。 “代数和几何拓扑结构”的编辑,并开始了一个书籍项目,旨在为联系几何的某些关键技术提供汇编资源。与Riemonian指标的联系。 R将在所有SIFERTS纤维空间属性上启动一个项目,以便在ttontact属性上进行。 )反映在Riemannian指标中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Etnyre其他文献
The arc complex and contact geometry: non-destabilizable planar open book decompositions of the tight contact 3-sphere
圆弧复形和接触几何:紧密接触 3 球面的不可失稳平面开卷分解
- DOI:
10.1093/imrn/rnt254 - 发表时间:
2013-05 - 期刊:
- 影响因子:1
- 作者:
John Etnyre;Youlin Li - 通讯作者:
Youlin Li
Constraints on families of smooth 4 –manifolds from Pin (cid:0) . 2 / –monopole
来自 Pin (cid:0) 的平滑 4 –流形族的约束。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
H. O. K. Onno;N. O. N. Akamura;John Etnyre;Kathryn Hess;Fred Cohen;J. Elisenda;Grigsby Boston;Jérôme Scherer;École Polytech;Féd;de Lausanne - 通讯作者:
de Lausanne
2 3 O ct 2 00 4 Table of Contents for the Handbook of Knot Theory
2 3 Oct 2 00 4 纽结理论手册目录
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
W. Menasco;M. Thistlethwaite;Colin Adams;Greg Buck;J. Birman;Tara Brendle;John Etnyre - 通讯作者:
John Etnyre
A T G Algebraic & Geometric Topology
ATG 代数
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
H. O. Y. Ang;John Etnyre;Kathryn Hess;Steven Boyer;Robert Lipshitz;Jérôme Scherer;École Polytech;Féd;de Lausanne - 通讯作者:
de Lausanne
T G Algebraic & Geometric Topology
TG 代数
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
John Etnyre;Kathryn Hess;Steven Boyer;Robert Lipshitz;Jérôme Scherer;École Polytech;Féd;de Lausanne - 通讯作者:
de Lausanne
John Etnyre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Etnyre', 18)}}的其他基金
Conference: Tech Topology Summer School 2023
会议:2023 年技术拓扑暑期学校
- 批准号:
2316093 - 财政年份:2023
- 资助金额:
$ 63.55万 - 项目类别:
Standard Grant
Conference: Tech Topology Conference at Georgia Tech
会议:佐治亚理工学院技术拓扑会议
- 批准号:
2333152 - 财政年份:2023
- 资助金额:
$ 63.55万 - 项目类别:
Standard Grant
Submanifolds and Cobordisms in Contact and Symplectic Topology
接触拓扑和辛拓扑中的子流形和配边
- 批准号:
1906414 - 财政年份:2019
- 资助金额:
$ 63.55万 - 项目类别:
Continuing Grant
The Topology and Geometry of Low-dimensional Manifolds
低维流形的拓扑和几何
- 批准号:
1832173 - 财政年份:2018
- 资助金额:
$ 63.55万 - 项目类别:
Standard Grant
RTG: Research Training in Geometry and Topology
RTG:几何和拓扑研究培训
- 批准号:
1745583 - 财政年份:2018
- 资助金额:
$ 63.55万 - 项目类别:
Continuing Grant
Submanifolds and Metrics in Contact Geometry
接触几何中的子流形和度量
- 批准号:
1608684 - 财政年份:2016
- 资助金额:
$ 63.55万 - 项目类别:
Standard Grant
Contact Topology in Dimension Three and Higher, July 28 - August 1, 2014
第三维及更高维度的接触拓扑,2014 年 7 月 28 日至 8 月 1 日
- 批准号:
1432918 - 财政年份:2014
- 资助金额:
$ 63.55万 - 项目类别:
Standard Grant
Contact geometry in dimensions high and low
高尺寸和低尺寸的接触几何形状
- 批准号:
1309073 - 财政年份:2013
- 资助金额:
$ 63.55万 - 项目类别:
Continuing Grant
Contact Geometry, Contact Homology and Open Book Decompositions
接触几何、接触同调和开卷分解
- 批准号:
0804820 - 财政年份:2008
- 资助金额:
$ 63.55万 - 项目类别:
Continuing Grant
相似国自然基金
自然接触对青少年网络问题行为的作用机制及其干预
- 批准号:72374025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
蜜蜂足垫粘附接触界面的力学调控机理及其仿生研究
- 批准号:52375282
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于纳微纤维化结构的柔性湿敏复合材料设计及非接触人机交互研究
- 批准号:52303112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
仿生形状记忆型自驱动接触熔化动态传热行为与强化机理研究
- 批准号:52306077
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
末端执行器抓取过程半物理仿真的刚-柔-软接触动力学机理和位置/力补偿研究
- 批准号:62303370
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A versatile lens architecture to shape visible light
用于塑造可见光的多功能镜头架构
- 批准号:
10652885 - 财政年份:2023
- 资助金额:
$ 63.55万 - 项目类别:
Extra-Corporeal Oxygenator with Minimal Blood Surface Contact
与血液表面接触最少的体外氧合器
- 批准号:
10760184 - 财政年份:2023
- 资助金额:
$ 63.55万 - 项目类别:
Floer Invariants, Cobordisms, and Contact Geometry
Floer 不变量、配边和接触几何
- 批准号:
2238131 - 财政年份:2022
- 资助金额:
$ 63.55万 - 项目类别:
Standard Grant
Group actions, symplectic and contact geometry, and applications
群作用、辛几何和接触几何以及应用
- 批准号:
RGPIN-2018-05771 - 财政年份:2022
- 资助金额:
$ 63.55万 - 项目类别:
Discovery Grants Program - Individual
Non-Linear Optical femtosecond laser device to alter corneal curvature and stiffness.
非线性光学飞秒激光装置可改变角膜曲率和硬度。
- 批准号:
10392214 - 财政年份:2022
- 资助金额:
$ 63.55万 - 项目类别: