Tech Topology Conference II

技术拓扑会议II

基本信息

  • 批准号:
    1259098
  • 负责人:
  • 金额:
    $ 5.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-12-01 至 2015-11-30
  • 项目状态:
    已结题

项目摘要

The Tech Topology Conference is an annual conference held at the Georgia Institute of Technology and the second edition of the conference will run form December 7 to 9, 2012. This new conference in geometry and topology has an emphasis on highlighting and enhancing research being done in the Southeast US. We will have seven speakers, in the areas of contact topology, Heegaard-Floer theory, 4 manifold topology, and knot theory; and we will have participants from across the southeast as well as the rest of the country. Over the past few years, there has been an incredible amount of cross-fertilization between the fields of surface topology, contact topology, knot theory, and 4 manifold theory. At this conference, we will have specialists in each of these areas, whose work lies at the interface of two more more of these areas. As such, the conference will be a fertile ground for new ideas in geometry and topology.The main goals of the conference are (1) To provide a high-profile geometry-topology conference to the Southeast that brings leaders of the field to the area as well as showcases the high quality mathematics being done in the Southeast, and (2) To provide a convenient meeting place for Southeastern researchers and students to gather, discuss, research, and interact with leading mathematicians from across the country. This conference will be a valuable learning environment for graduate students and junior faculty in the Southeast, and will help raise the profile of the region. We will provide ample time for the participants to meet, formally and informally, for example during long breaks between talks and organized discussion sessions. We plan to post notes from all the talks on the conference web site. More information can be found on the conference web site: http://ttc.gatech.edu.
技术拓扑会议是在佐治亚理工学院举行的年度会议,第二版将于2012年12月7日至9日举行。这次新的几何和拓扑会议重点是突出显示和增强研究东南美国。在接触拓扑,Heegaard-loer理论,4多种拓扑和结理论的领域,我们将有七个演讲者。我们将有来自东南部以及全国其他地区的参与者。在过去的几年中,表面拓扑,接触拓扑,结理论和4个歧管理论之间存在着令人难以置信的交叉施用。在本次会议上,我们将在每个领域中的每个领域都有专家,其工作在于另外两个领域的界面。因此,会议将是几何和拓扑新思想的肥沃基础。会议的主要目标是(1)向东南部提供一个备受瞩目的几何学论文会议,将该领域的领导者带到该地区除了展示在东南部完成的高质量数学,(2)为东南研究人员和学生提供一个方便的聚会场所,以聚集,讨论,研究,研究和与来自全国各地的主要数学家进行互动。对于东南部的研究生和初级教师,这次会议将是一个宝贵的学习环境,并将有助于提高该地区的形象。我们将为参与者提供足够的时间,正式和非正式地见面,例如在谈判和有组织的讨论会议之间的长时间休息期间。我们计划在会议网站上发布所有谈判的注释。更多信息可以在会议网站上找到:http://ttc.gatech.edu。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Etnyre其他文献

The arc complex and contact geometry: non-destabilizable planar open book decompositions of the tight contact 3-sphere
圆弧复形和接触几何:紧密接触 3 球面的不可失稳平面开卷分解
Constraints on families of smooth 4 –manifolds from Pin (cid:0) . 2 / –monopole
来自 Pin (cid:0) 的平滑 4 –流形族的约束。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. O. K. Onno;N. O. N. Akamura;John Etnyre;Kathryn Hess;Fred Cohen;J. Elisenda;Grigsby Boston;Jérôme Scherer;École Polytech;Féd;de Lausanne
  • 通讯作者:
    de Lausanne
2 3 O ct 2 00 4 Table of Contents for the Handbook of Knot Theory
2 3 Oct 2 00 4 纽结理论手册目录
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Menasco;M. Thistlethwaite;Colin Adams;Greg Buck;J. Birman;Tara Brendle;John Etnyre
  • 通讯作者:
    John Etnyre
T G Algebraic & Geometric Topology
TG 代数
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Etnyre;Kathryn Hess;Steven Boyer;Robert Lipshitz;Jérôme Scherer;École Polytech;Féd;de Lausanne
  • 通讯作者:
    de Lausanne
A T G Algebraic & Geometric Topology
ATG 代数
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. O. Y. Ang;John Etnyre;Kathryn Hess;Steven Boyer;Robert Lipshitz;Jérôme Scherer;École Polytech;Féd;de Lausanne
  • 通讯作者:
    de Lausanne

John Etnyre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Etnyre', 18)}}的其他基金

Conference: Tech Topology Summer School 2023
会议:2023 年技术拓扑暑期学校
  • 批准号:
    2316093
  • 财政年份:
    2023
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Standard Grant
Conference: Tech Topology Conference at Georgia Tech
会议:佐治亚理工学院技术拓扑会议
  • 批准号:
    2333152
  • 财政年份:
    2023
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Standard Grant
Surgery in Contact Geometry
接触几何外科手术
  • 批准号:
    2203312
  • 财政年份:
    2022
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Continuing Grant
Submanifolds and Cobordisms in Contact and Symplectic Topology
接触拓扑和辛拓扑中的子流形和配边
  • 批准号:
    1906414
  • 财政年份:
    2019
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Continuing Grant
The Topology and Geometry of Low-dimensional Manifolds
低维流形的拓扑和几何
  • 批准号:
    1832173
  • 财政年份:
    2018
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Standard Grant
RTG: Research Training in Geometry and Topology
RTG:几何和拓扑研究培训
  • 批准号:
    1745583
  • 财政年份:
    2018
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Continuing Grant
Submanifolds and Metrics in Contact Geometry
接触几何中的子流形和度量
  • 批准号:
    1608684
  • 财政年份:
    2016
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Standard Grant
Contact Topology in Dimension Three and Higher, July 28 - August 1, 2014
第三维及更高维度的接触拓扑,2014 年 7 月 28 日至 8 月 1 日
  • 批准号:
    1432918
  • 财政年份:
    2014
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Standard Grant
Contact geometry in dimensions high and low
高尺寸和低尺寸的接触几何形状
  • 批准号:
    1309073
  • 财政年份:
    2013
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Continuing Grant
Contact Geometry, Contact Homology and Open Book Decompositions
接触几何、接触同调和开卷分解
  • 批准号:
    0804820
  • 财政年份:
    2008
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Continuing Grant

相似国自然基金

随机非线性复杂系统的拓扑结构及其在交叉学科中的应用
  • 批准号:
    12375034
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
瞬态高温环境下力学承载-防隔热一体化结构拓扑优化方法研究
  • 批准号:
    12302148
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于木质纳米纤维素基元的仿生拓扑结构Si3N4陶瓷的多尺度序构及强韧化机制
  • 批准号:
    52372068
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
碳的拓扑物性与晶体结构关系的理论研究
  • 批准号:
    12304087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于expander方法的三类图结构(拓扑子式、浸入、图子式)嵌入问题研究
  • 批准号:
    12301447
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Standard Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Standard Grant
Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
  • 批准号:
    2348932
  • 财政年份:
    2024
  • 资助金额:
    $ 5.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了