NSF/DMR-BSF: Bioinspired peptidic materials for proton and electron-proton conducting membranes
NSF/DMR-BSF:用于质子和电子-质子传导膜的仿生肽材料
基本信息
- 批准号:1608454
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical: This NSF/DMR-BSF award by the Biomaterials program in the Division of Materials Research to Duke University aims to produce, model and study innovative materials that are inspired by biological structures. This is a collaborative proposal with scientists from US and Israel (Ben Gurion University of the Negev), and this award is co-funded by the Global Venture Funds program in the Office of International Science and Engineering. The scientific goal of this project is to put the ingenuity of nature to the service of modern electronics and devices for environment friendly applications in transportation, energy production and storage, sensing, and other environmental challenges. Applications of these technologies would be very important in the automotive industry, in industrial energy production processes, and in providing energy sources for implantable biomedical devices. While biological materials proteins may not function well in these targeted applications of interest, borrowing some of the motifs and building blocks of nature can be used to produce materials that capture some of the critical functions of biomolecules, while still functioning effectively in demanding non-biological settings. The proposed theoretical and experimental studies are expected to advance the development of components based on biological building blocks. In addition, the proposed theoretical studies would enable the accurate modeling of molecular mechanisms at an atomic level. The collaborative experimental-theoretical nature of this project promotes great cross-training of students in a lively multi-disciplinary setting that will include students and faculty members from two universities at USA and Israel. In mentoring the students, the proposal is particularly attentive to novel curriculum developments, and in recruiting and mentoring underrepresented groups into careers in science and technology.Technical: This project combines theoretical and experimental studies with chemical synthesis and materials characterization to design and elucidate the function of bioinspired electron-proton transport membranes. Extensive studies indicate that the alignment of proton-conduction channels is required for high proton conductivities in these bioinspired structures. This finding motivates the study of self-assembling pi-stacked polypeptides that form beta sheets and lead to designed pathways for proton transport. The main objective of this project is to explore the mechanisms of charge transport (proton and/or electron transport, or coupled proton-electron transport) in biological protein assemblies with beta-sheet architecture (fibrils and nanotubes) using a variety of theoretical and experimental approaches. Fundamental understanding of proton and electron and coupled proton-electron transport mechanisms in these specific examples of biological assemblies will help to establish the structure-function relationship to optimize conductive properties of bioinspired materials. These structures of interest involve natural and engineered amino acids (with modified side-chains) that can self-assemble into fibers or nanotubes because of key hydrogen-bonding motifs. Since proton transfer can involve between side chains and amide bonds, these assemblies promise to provide intrinsic networks with effective long-range proton transport relays. Preliminary data in the investigator's laboratory support the concept of developing lower-cost materials that may, in the long run, be able to compete with favorable proton-transport membrane materials (e.g., Nafion), and yet to operate in a widened ranges of temperature and hydration states. In addition, the biomaterials under study may support tunable channels for proton-coupled electron transport, which would provide advantages for the development of hydrogen separation structures. The theoretical study of charge transport in these materials will extend earlier theories to the mesoscale, encompassing transport on the scale of thousands of molecules. The theoretical studies in the project will use simulation tools that range from ab initio methods to coarse-grained molecular dynamics and mathematical modeling. By combining synthesis, theory, and materials characterization, the project will attempt to realize the promise of this field. The scientific broader impact of this project is to put the ingenuity of nature to the service of modern electronics, which may produce desirable long-term impacts on transportation, energy production and storage, sensing, and environmental challenges.
非技术性:该 NSF/DMR-BSF 奖项由杜克大学材料研究部生物材料项目颁发,旨在生产、建模和研究受生物结构启发的创新材料。这是与美国和以色列(内盖夫本古里安大学)科学家的合作提案,该奖项由国际科学与工程办公室的全球风险基金项目共同资助。该项目的科学目标是将大自然的聪明才智运用到现代电子和设备的服务中,以实现交通、能源生产和存储、传感以及其他环境挑战中的环境友好型应用。这些技术的应用在汽车工业、工业能源生产过程以及为植入式生物医学设备提供能源方面将非常重要。 虽然生物材料蛋白质在这些感兴趣的目标应用中可能无法很好地发挥作用,但借用自然的一些图案和构建模块可以用来生产捕获生物分子的一些关键功能的材料,同时在要求苛刻的非生物材料中仍然有效地发挥作用。设置。所提出的理论和实验研究预计将推动基于生物构件的组件的开发。此外,所提出的理论研究将使原子水平上的分子机制的精确建模成为可能。该项目的实验理论合作性质促进了学生在活跃的多学科环境中进行大规模交叉培训,其中包括来自美国和以色列两所大学的学生和教职员工。在指导学生时,该提案特别关注新颖的课程开发,以及招募和指导代表性不足的群体进入科学技术领域。技术:该项目将理论和实验研究与化学合成和材料表征相结合,以设计和阐明功能仿生电子质子传输膜。广泛的研究表明,这些仿生结构中的高质子电导率需要质子传导通道的排列。这一发现激发了对自组装 pi 堆积多肽的研究,这些多肽形成 β 片层并导致设计质子运输途径。该项目的主要目标是利用各种理论和实验方法探索具有 β-折叠结构(原纤维和纳米管)的生物蛋白质组装体中的电荷传输(质子和/或电子传输,或耦合质子电子传输)机制接近。对这些生物组件的具体例子中的质子和电子以及耦合的质子-电子传输机制的基本了解将有助于建立结构-功能关系,以优化仿生材料的导电性能。这些感兴趣的结构涉及天然和工程氨基酸(具有修饰的侧链),由于关键的氢键基序,这些氨基酸可以自组装成纤维或纳米管。由于质子转移可能涉及侧链和酰胺键之间,因此这些组件有望为内在网络提供有效的远程质子传输中继。研究人员实验室的初步数据支持开发低成本材料的概念,从长远来看,这些材料可能能够与有利的质子传输膜材料(例如 Nafion)竞争,并且可以在更宽的温度范围内运行和水合状态。 此外,正在研究的生物材料可能支持质子耦合电子传输的可调通道,这将为氢分离结构的开发提供优势。这些材料中电荷传输的理论研究将把早期的理论扩展到介观尺度,包括数千个分子尺度上的传输。该项目的理论研究将使用从头算方法到粗粒度分子动力学和数学建模的模拟工具。通过结合合成、理论和材料表征,该项目将尝试实现该领域的前景。该项目在科学上更广泛的影响是将大自然的独创性运用到现代电子产品中,这可能会对交通、能源生产和存储、传感和环境挑战产生理想的长期影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Beratan其他文献
David Beratan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Beratan', 18)}}的其他基金
Collaborative Research: Infra-Red Control of Electron Transfer Mechanisms
合作研究:电子转移机制的红外控制
- 批准号:
1955138 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Synthesizing Quantum Coherence
CCI 第一阶段:NSF 量子相干合成中心
- 批准号:
1925690 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Infra-red Control of Electron Transfer Mechanisms
合作研究:电子转移机制的红外控制
- 批准号:
1565812 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Electron Transfer and Storage in Assemblies Based on Nucleic Acids
合作研究:基于核酸的组装体中的电子转移和存储
- 批准号:
1413257 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Directed Charge Transfer in Metal Containing Peptide Nucleic Acid Assemblies
合作研究:含金属肽核酸组装体中的定向电荷转移
- 批准号:
1057953 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Infra-red Control of Electron-Transfer Mechanisms
合作研究:电子转移机制的红外控制
- 批准号:
1012357 - 财政年份:2010
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Infra-red Control of Inelastic Electron Transfer: Toward a Unimolecular Double-Slit Experiment
非弹性电子转移的红外控制:单分子双缝实验
- 批准号:
0718043 - 财政年份:2007
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CRC: Long-Range Electron Transfer in Hybrid Inorganic-Peptide Nucleic Acid Nanoscale Assemblies
CRC:混合无机肽核酸纳米级组装体中的长程电子转移
- 批准号:
0628218 - 财政年份:2006
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
A Divide and Conquer Approach to the Response Properties of Biomolecules: Electron Transfer Reactions, Raman Spectroscopy, and Spectroscopic Probes of Chirality
生物分子响应特性的分而治之的方法:电子转移反应、拉曼光谱和手性光谱探针
- 批准号:
0196556 - 财政年份:2001
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
A Divide and Conquer Approach to the Response Properties of Biomolecules: Electron Transfer Reactions, Raman Spectroscopy, and Spectroscopic Probes of Chirality
生物分子响应特性的分而治之的方法:电子转移反应、拉曼光谱和手性光谱探针
- 批准号:
9727657 - 财政年份:1998
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似国自然基金
PpbHLH14-DMR6-like响应MeJA诱导增强梨炭疽病抗性的分子机制
- 批准号:32302484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
泛素连接酶DDEL1/2/3介导水杨酸羟化酶DMR6降解调控植物免疫的分子机制
- 批准号:32300255
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
circRNA-DMR介导m6A去甲基化酶ALKBH5低表达并促进糖尿病视网膜小胶质细胞M1型极化的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dlk1-Dio3印记区域内母本甲基化差异甲基化区Meg8-DMR的功能研究
- 批准号:31771601
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
猪RTL1基因DMR甲基化状态对其印记状态及表达水平的调控
- 批准号:31201791
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NSF/DMR-BSF: Artificial Semiconductor Nanocrystal Molecules for Charge Carrier Separation
NSF/DMR-BSF:用于电荷载流子分离的人造半导体纳米晶体分子
- 批准号:
2026741 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
NSF/DMR-BSF: Theory of Quantum Materials
NSF/DMR-BSF:量子材料理论
- 批准号:
2000987 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
NSF/DMR-BSF: Synergistic biopolymer co-assembly regulating the emergence of translation and replication in synthetic networks
NSF/DMR-BSF:协同生物聚合物共组装调节合成网络中翻译和复制的出现
- 批准号:
2004846 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
RUI: NSF/DMR-BSF: Nonequilibrium Quantum Matter: Timescales and Self-Averaging
RUI:NSF/DMR-BSF:非平衡量子物质:时间尺度和自平均
- 批准号:
1936006 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
NSF/DMR-BSF: Electronic Correlations and Disorder in Berry materials
NSF/DMR-BSF:浆果材料中的电子相关性和无序性
- 批准号:
2002795 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant