GOALI: Extreme Environment Microcontrollers

GOALI:极端环境微控制器

基本信息

  • 批准号:
    1607285
  • 负责人:
  • 金额:
    $ 34.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

AbstractGOALI: Extreme Environment MicrocontrollersProject Objectives:The market needs of extreme environment electronics encompass many commercial applications such as integrated gate drivers in power industry, in-engine sensing and control in automobile industry, well condition monitoring and drilling assistance in oil/gas exploration, cryogenic high-field magnet creation in medical imaging instrumentation, and many others like superconducting computing and energy storage systems, laser industry, space exploration, in-field distributed sensors, magnetic levitation transport systems, and infrared systems.Non-Technical Abstract:The extreme environments pose significant challenges to electronics, especially for digital integrated circuits: for extreme temperature environments, since the circuit speed is a strong function of temperature, timing control becomes very difficult across wide temperature ranges; for unstable energy source environment, the unstable or low power supply causes large variations in circuit speed as well. In the prevailing clocked synchronous digital integrated circuits, synchronized clocks are used to control and coordinate the circuit operation, along with a set of timing constraints such as setup and hold times. These critical timing constraints can be easily broken in extreme environments due to the circuit speed changes, thereby inducing system malfunction. Therefore, innovations are needed to solve these problems and develop extreme environment electronics in order to make contributions to the commercial industry discussed above in efficient and reliable sensing, communication, control, and data processing subsystems.Technical AbstractThis GOALI project is a collaborative effort between the University of Arkansas and Radiance Technologies to develop quasi-delay insensitive asynchronous microcontrollers capable of operating reliably under extreme environments without extra protection or control/adjustment. Quasi-delay insensitive asynchronous logic like the NULL Convention Logic (NCL) uses local handshaking protocols in lieu of global clocks to control the circuit behavior. Individual gate delay has no impact on the correctness of the circuit's outputs. This feature guarantees robust circuit operation under extreme environments, making NCL a promising candidate for designing microcontrollers for such applications. However, innovations in microcontroller architecture and NCL circuit design are needed to improve performance, reduce overhead, and enhance the robustness: at the architecture-level, the prevailing bus architecture is unsuitable for NCL and needs to be replaced; the distributed storage mechanism is the weakest link of circuit operation and needs to be reorganized; and the external interrupt handling needs to redesigned as fully asynchronous. At the circuit-level, transistors need to be resized to improve the reliability under extreme environments; NCL logic gate design needs to be modified for low supply voltages; and NCL logic transformation needs to be investigated to improve the performance. With the industry-standard guidance, experience, and assistance from Radiance Technologies, a prototype NCL microcontroller incorporating the above innovations will be designed, fabricated, and tested. The results will be analyzed for further improvements, dissemination, and technology transfer for potential commercialization.
AbstractGOALI: Extreme Environment MicrocontrollersProject Objectives:The market needs of extreme environment electronics encompass many commercial applications such as integrated gate drivers in power industry, in-engine sensing and control in automobile industry, well condition monitoring and drilling assistance in oil/gas exploration, cryogenic high-field magnet creation in medical imaging instrumentation, and many others like superconducting computing and energy storage systems, laser industry, space exploration,内场分布式传感器,磁性悬浮传输系统和红外系统。非技术摘要:极端环境对电子设备构成了重大挑战,尤其是对于数字集成电路:对于极端温度环境,由于电路速度是温度的强大功能,因此定时控制变得非常困难,在广泛的温度范围内变得非常困难;对于不稳定的能源环境,不稳定或低电源也会导致电路速度的差异。在盛行的时钟同步数字集成电路中,同步时钟用于控制和协调电路操作,以及一组正时约束,例如设置和保持时间。由于电路速度的变化,这些关键的时序约束很容易在极端环境中破裂,从而引起了系统故障。 Therefore, innovations are needed to solve these problems and develop extreme environment electronics in order to make contributions to the commercial industry discussed above in efficient and reliable sensing, communication, control, and data processing subsystems.Technical AbstractThis GOALI project is a collaborative effort between the University of Arkansas and Radiance Technologies to develop quasi-delay insensitive asynchronous microcontrollers capable of operating reliably under extreme environments without extra保护或控制/调整。准戴式逻辑(NULL惯例逻辑(NCL))使用本地握手协议代替全局时钟来控制电路行为。单个门延迟对电路输出的正确性没有影响。此功能保证了在极端环境下的强大电路操作,使NCL成为为此类应用设计微控制器的有前途的候选人。但是,需要微控制器体系结构和NCL电路设计的创新来提高性能,降低开销和增强鲁棒性:在体系结构级别上,盛行的总线体系结构不适合NCL,需要更换;分布式存储机制是电路运行的最弱连接,需要重新组织;而且外部中断处理需要重新设计为完全异步。在电路级别,需要调整晶体管以提高极端环境下的可靠性; NCL逻辑门设计需要为低电源电压进行修改;需要研究NCL逻辑转换以提高性能。借助Radiance Technologies的行业标准指导,经验和协助,将设计,制造和测试将纳入上述创新的原型NCL微控制器进行设计。结果将进行分析,以进一步改进,传播和技术转移,以进行潜在商业化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jia Di其他文献

Multi-Threshold NULL Convention Logic (MTNCL): An Ultra-Low Power Asynchronous Circuit Design Methodology
多阈值空约定逻辑 (MTNCL):一种超低功耗异步电路设计方法
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liang Zhou;R. Parameswaran;F. A. Parsan;Scott C. Smith;Jia Di
  • 通讯作者:
    Jia Di
Shear strength of GMZ07 bentonite and its mixture with sand saturated with saline solution
GMZ07膨润土及其与盐溶液饱和砂的混合物的剪切强度
  • DOI:
    10.1016/j.clay.2016.08.004
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Zhang Long;Sun De'an;Jia Di
  • 通讯作者:
    Jia Di
beta-Cyclodextrin-based oil-absorbents: Preparation, high oil absorbency and reusability
β-环糊精基吸油剂:制备、高吸油性和可重复使用性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Ding Lei;Li Yi;Jia Di;Deng Jianping;Yang Wantai
  • 通讯作者:
    Yang Wantai
A Method of Non-textured Regions Matching
一种无纹理区域匹配方法
  • DOI:
    10.1049/cje.2019.02.008
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Jia Di;Zhao Mingyuan;Cao Jun;Song Weidong
  • 通讯作者:
    Song Weidong
Point Cloud Registration Based on Neighborhood Characteristic Point Extraction and Matching
  • DOI:
    10.3788/gzxb20204904.0415001
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Li Xin-chun;Yan Zhen-yu;Jia Di
  • 通讯作者:
    Jia Di

Jia Di的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jia Di', 18)}}的其他基金

Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
  • 批准号:
    2329014
  • 财政年份:
    2023
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Continuing Grant
CCRI:Medium:Collaborative Research:Hardware-in-the-Loop and Remotely-Accessible/Configurable/Programmable Internet of Things (IoT) Testbeds
CCRI:中:协作研究:硬件在环和远程访问/可配置/可编程物联网 (IoT) 测试平台
  • 批准号:
    2016485
  • 财政年份:
    2020
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Standard Grant
IRES Track I:Collaborative Research:Application-Specific Asynchronous Deep Learning IC Design for Ultra-Low Power
IRES 轨道 I:协作研究:超低功耗专用异步深度学习 IC 设计
  • 批准号:
    1951489
  • 财政年份:
    2020
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Standard Grant
Cyber-Centric Multidisciplinary Security Workforce Development
以网络为中心的多学科安全劳动力发展
  • 批准号:
    1922180
  • 财政年份:
    2019
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Continuing Grant
SaTC: TTP: Medium: Collaborative: RESULTS: Reverse Engineering Solutions on Ubiquitous Logic for Trustworthiness and Security
SaTC:TTP:媒介:协作:结果:针对可信性和安全性的普适逻辑的逆向工程解决方案
  • 批准号:
    1703602
  • 财政年份:
    2017
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Standard Grant
SHF: Small: ADAPT: an Adaptive Delay-insensitive Asynchronous PlaTform for energy efficiency across wide dynamic ranges
SHF:小型:ADAPT:自适应延迟不敏感异步平台,可在宽动态范围内实现能源效率
  • 批准号:
    1216382
  • 财政年份:
    2012
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Standard Grant
TC: Medium: Collaborative Research: Side-Channel-Proof Embedded Processors with Integrated Multi-Layer Protection
TC:中:协作研究:具有集成多层保护的侧通道防护嵌入式处理器
  • 批准号:
    0904943
  • 财政年份:
    2009
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Standard Grant

相似国自然基金

极端台风环境下深厚软土海床海上风机基础多向受荷灾变机制与一体化分析方法
  • 批准号:
    52301343
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
极端海洋环境下漂浮式海上风机非线性耦合特性研究
  • 批准号:
    52371268
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
极端环境下视觉感知的关键问题研究
  • 批准号:
    62376222
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
固沙草属物种对青藏高原极端环境的适应性进化研究
  • 批准号:
    32360305
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
极端环境荷载诱发黄土滑坡失稳机理与预测
  • 批准号:
    42330704
  • 批准年份:
    2023
  • 资助金额:
    228 万元
  • 项目类别:
    重点项目

相似海外基金

Vision-only structure-from-motion via acoustic video for extreme underwater environment sensing
通过声学视频进行纯视觉运动结构,用于极端水下环境传感
  • 批准号:
    24K20867
  • 财政年份:
    2024
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NICHD Neonatal Research Network (NRN): Clinical Centers (UG1 Clinical Trial Optional
NICHD 新生儿研究网络 (NRN):临床中心(UG1 临床试验可选
  • 批准号:
    10682888
  • 财政年份:
    2023
  • 资助金额:
    $ 34.92万
  • 项目类别:
Sharp Neonatal Research Institute Clinical Center (Sharp NRI-CC)
夏普新生儿研究所临床中心 (Sharp NRI-CC)
  • 批准号:
    10683030
  • 财政年份:
    2023
  • 资助金额:
    $ 34.92万
  • 项目类别:
Impact of prenatal exposure to climate stressors and severe maternal morbidity: a retrospective birth cohort study
产前暴露于气候压力源和严重孕产妇发病率的影响:一项回顾性出生队列研究
  • 批准号:
    10648271
  • 财政年份:
    2023
  • 资助金额:
    $ 34.92万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10835395
  • 财政年份:
    2023
  • 资助金额:
    $ 34.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了