Scalable Nanomanufacturing of Reconfigurable Photonic Crystals

可重构光子晶体的可扩展纳米制造

基本信息

  • 批准号:
    1562861
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The microelectronics revolution sparked by the invention and the very-large-scale integration of transistors has affected almost every aspect of our daily lives. As the 50-year-old Moore's law is approaching its limits, scientists are now turning to light as the information carrier. Unfortunately, our ability to control light in nanoscopic volumes is in many ways in its infancy, compared with how we can manipulate electrons. A new class of optical materials known as photonic crystals may hold the key to continued progress towards all-optical integrated circuits. However, traditional nanomanufacturing technologies for producing photonic crystals with three-dimensionally ordered nanostructures suffer from low throughput, small sample areas, and high cost. By integrating a simple, fast, and inexpensive colloidal self-assembly methodology with a new type of shape memory polymer, this project will explore a novel scalable nanomanufacturing approach for wafer-scale production of photonic crystals with reconfigurable optical properties. This interdisciplinary research will be closely integrated into curriculum development, new demonstration module design, and training of underrepresented high school and undergraduate students through a few successful programs at the university. Although various colloidal self-assembly technologies have been developed, most of these bottom-up approaches are only favorable for low volume, laboratory-scale production of photonic crystals. Moreover, self-assembled photonic crystals with fixed microstructures are only appropriate for fabricating passive nanooptical devices. Smart shape memory polymers that can memorize and recover their permanent shapes from structurally stable temporary sates are promising for developing active photonic crystal devices. Unfortunately, most of the existing shape memory polymers are thermoresponsive, and they suffer from heat-demanding shape memory cycles. The research team aims to conduct simultaneous experimental and theoretical investigations to address the key scientific and engineering barriers faced by the current colloidal self-assembly and shape memory polymer technologies. In-situ nanoscopic mechanical and mechanochromic tests, along with multiphysics mechanical finite element analysis simulations will facilitate the basic understanding of the unusual shape recovery mechanisms of the new type of shape memory polymer that enables unconventional all-room-temperature shape memory cycles. The stimuli-responsive microstructure-optical property relationship of the self-assembled photonic crystals will be elucidated by optical characterization and finite element optical simulations. Large-area macroporous polymer photonic crystals with optimal crystal structures and multiple memorizable optical states will be fabricated by the scalable bottom-up nanomanufacturing technology.
晶体管的发明和大规模集成引发的微电子革命几乎影响了我们日常生活的方方面面。随着已有 50 年历史的摩尔定律已接近其极限,科学家们现在开始将光作为信息载体。不幸的是,与我们操纵电子的方式相比,我们在纳米级体积内控制光的能力在很多方面还处于起步阶段。一种称为光子晶体的新型光学材料可能是全光集成电路持续进步的关键。然而,用于生产具有三维有序纳米结构的光子晶体的传统纳米制造技术存在产量低、样品面积小和成本高等问题。通过将简单、快速且廉价的胶体自组装方法与新型形状记忆聚合物相结合,该项目将探索一种新颖的可扩展纳米制造方法,用于晶圆级生产具有可重构光学特性的光子晶体。这项跨学科研究将通过大学的一些成功项目,与课程开发、新示范模块设计以及对代表性不足的高中生和本科生的培训紧密结合。 尽管已经开发了各种胶体自组装技术,但大多数自下而上的方法仅适用于光子晶体的小批量、实验室规模生产。此外,具有固定微观结构的自组装光子晶体仅适用于制造无源纳米光学器件。智能形状记忆聚合物可以记忆结构稳定的临时状态并恢复其永久形状,有望用于开发有源光子晶体器件。不幸的是,大多数现有的形状记忆聚合物都是热响应性的,并且它们会遭受对热量要求较高的形状记忆循环的影响。研究团队旨在同时进行实验和理论研究,以解决当前胶体自组装和形状记忆聚合物技术面临的关键科学和工程障碍。原位纳米机械和力致变色测试以及多物理场机械有限元分析模拟将有助于对新型形状记忆聚合物的不寻常形状恢复机制的基本了解,这种聚合物能够实现非常规的全室温形状记忆循环。自组装光子晶体的刺激响应微结构-光学特性关系将通过光学表征和有限元光学模拟来阐明。通过可扩展的自下而上的纳米制造技术,将制造具有最佳晶体结构和多个可记忆光学状态的大面积大孔聚合物光子晶体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Jiang其他文献

Review of genetic engineering of Laminaria japonica (Laminariales, Phaeophyta) in China
我国海带基因工程研究进展
  • DOI:
    10.1023/a:1017091629539
  • 发表时间:
    1999-04-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    S. Qin;G. Sun;Peng Jiang;L. Zou;Yun Wu;C. Tseng
  • 通讯作者:
    C. Tseng
HIV‐1 Tat Peptide‐Gemcitabine Gold (III)‐PEGylated Complex—Nanoflowers: A Sleek Thermosensitive Hybrid Nanocarrier as Prospective Anticancer
HIV—1 Tat 肽—吉西他滨金 (III)—聚乙二醇化复合物—纳米花:一种光滑的热敏混合纳米载体,具有潜在的抗癌作用
  • DOI:
    10.1002/ppsc.201800082
  • 发表时间:
    2018-06-07
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Hui Liu;Peng Jiang;ZhongHu Li;Xiaowu Li;N. Djaker;J. Spadavecchia
  • 通讯作者:
    J. Spadavecchia
Research on the Universality of Convolutional Networks in Resistivity Inversion
卷积网络在电阻率反演中的普适性研究
Alterations of Human Plasma Proteome Profile on Adaptation to High-Altitude Hypobaric Hypoxia.
人类血浆蛋白质组谱的变化对高海拔低压缺氧的适应。
  • DOI:
    10.1021/acs.jproteome.8b00911
  • 发表时间:
    2019-03-25
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Xi Du;Rong Zhang;S. Ye;Fengjuan Liu;Peng Jiang;Xiaochuan Yu;Jin Xu;Li Ma;Haijun Cao;Yuanzhen Shen;F. Lin;Zongkui Wang;Changqing Li
  • 通讯作者:
    Changqing Li
Unsupervised Deep Learning for Data-Driven Reliability and Risk Analysis of Engineered Systems
用于工程系统数据驱动可靠性和风险分析的无监督深度学习
  • DOI:
    10.1016/b978-0-12-811318-9.00023-5
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peng Jiang;M. Maghrebi;A. Crosky;S. Saydam
  • 通讯作者:
    S. Saydam

Peng Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Jiang', 18)}}的其他基金

CAREER: Compiler and Runtime Support for Sampled Sparse Computations on Heterogeneous Systems
职业:异构系统上采样稀疏计算的编译器和运行时支持
  • 批准号:
    2338144
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
  • 批准号:
    2310423
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CSR: Small: A Fine-Grained Hierarchical Memory Management System for Applications with Dynamic Memory Demand on GPUs
CSR:小型:针对 GPU 上具有动态内存需求的应用程序的细粒度分层内存管理系统
  • 批准号:
    2311610
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Planning: Towards an Integrated, Full-stack System for Memory-centric Computing
协作研究:PPoSS:规划:面向以内存为中心的计算的集成全栈系统
  • 批准号:
    2028825
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Heat-Pipe-Inspired Dynamic Windows Enabled by a Scalable Bottom-Up Technology
由可扩展的自下而上技术实现的受热管启发的动态窗户
  • 批准号:
    1300613
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
I-Corps: Development of a Scalable Bottom-Up Nanofabrication Platform
I-Corps:开发可扩展的自下而上纳米加工平台
  • 批准号:
    1265139
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Scalable Self-Assembly of Colloidal Nanoparticles
胶体纳米粒子的可扩展自组装
  • 批准号:
    1000686
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Development of A Scalable Spin-Coating Technological Platform for Colloidal Self-Assembly and Templating Nanofabrication
职业:开发用于胶体自组装和模板纳米加工的可扩展旋涂技术平台
  • 批准号:
    0744879
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Shear-Aligned Assembly of Photonic Band Gap Coatings
光子带隙涂层的剪切对齐组装
  • 批准号:
    0651780
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

面向3D光场显示的衍射型光场调制器研究
  • 批准号:
    61905077
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
悬切结构的仿生制备及液体自发定向输运机制研究
  • 批准号:
    61805156
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
跨尺度纳米操作机驱动机理及自动化微纳操作方法的研究
  • 批准号:
    61774107
  • 批准年份:
    2017
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
基于离焦扫描穆勒显微镜的纳米结构缺陷检测理论与方法研究
  • 批准号:
    51775217
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
多自由度高速大范围纳米定位控制技术及其在基于探针高频振动的硬材料纳米加工中的应用
  • 批准号:
    61673091
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Ionic liquids for subtractive and additive nanomanufacturing
用于减材和增材纳米制造的离子液体
  • 批准号:
    MR/Y034376/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
REU Site: Nanomanufacturing of Emerging 2D Materials and Devices
REU 网站:新兴 2D 材料和器件的纳米制造
  • 批准号:
    2244201
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
High yield adaptive laser nanomanufacturing system for photonic devices
用于光子器件的高产量自适应激光纳米制造系统
  • 批准号:
    LP210100467
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Linkage Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了