Collaborative Research: PPoSS: Planning: Towards an Integrated, Full-stack System for Memory-centric Computing
协作研究:PPoSS:规划:面向以内存为中心的计算的集成全栈系统
基本信息
- 批准号:2028825
- 负责人:
- 金额:$ 6.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the volume of data being processed by today’s systems continues to increase, the traditional organization of memory systems is shifting to accommodate that accelerating growth. Data-centric applications such as irregular graph-mining algorithms, distributed machine learning, and genome sequencing require a large amount of data to compute and store, and generate massive amounts of intermediate data to move around the compute resources. Memory-centric computing is a potential solution to overcome the performance bottleneck of current systems. Near or in-memory computing can mitigate the bandwidth limitations with fewer data movements between the memory and host processing units; a remote memory pool with a fast interconnect shared by all processing units can overcome the current capacity constraints. Both solutions are promising for breaking down the memory wall. However, it is challenging to release the power of both solutions with direct integration. In this project, the investigators propose an integrated, full-stack system to enable memory-centric computing (SMC2). The system will incorporate the emerging near-memory data processors (NDP) and an extensible remote memory pool to minimize the performance impact of memory accesses in graph-mining applications. The research tasks include optimizations in architecture, the software/hardware interface, programming models/compilers, and performance models/optimization. First, the architecture is revisited to utilize the NDP hardware to build an active memory system that supports intelligent data prefetch and speculative data push. Next, the system software is redesigned to support NDP function calls, data-push operations, and virtualization. Then, with new system abstractions, a new programming model is proposed to allow programmers to specify which tasks can run on the NDP resources, and to support efficient NDP-to-NDP communication. Lastly, a new system performance model and optimization framework are incorporated. By putting the four pieces together, the proposed system support can maximize the performance of memory-centric computing with new system abstractions and theories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着当今系统处理的数据量不断增加,传统的内存系统组织正在发生转变,以适应以数据为中心的应用程序的加速增长,例如不规则图形挖掘算法、分布式机器学习和基因组测序需要大量数据。以内存为中心的计算是克服当前系统性能瓶颈的潜在解决方案,可以缓解带宽限制。内存和主机之间的数据移动更少处理单元;具有由所有处理单元共享的快速互连的远程内存池可以克服当前的容量限制。然而,通过直接集成来释放这两种解决方案的能力是具有挑战性的。在该项目中,研究人员提出了一种集成的全堆栈系统来实现以内存为中心的计算(SMC2)。该系统将整合新兴的近内存数据处理器(NDP)和可扩展的远程内存池,以最大限度地减少性能影响。图挖掘中的内存访问研究任务包括架构、软件/硬件接口、编程模型/编译器和性能模型/优化的优化,首先,重新审视架构,利用 NDP 硬件构建支持智能数据预取和存储的主动存储系统。接下来,系统软件被重新设计以支持NDP函数调用、数据推送操作和虚拟化,然后,通过新的系统抽象,提出了一种新的编程模型,以允许程序员指定哪些任务可以在NDP上运行。最后,通过将这四个部分结合在一起,所提出的系统支持可以通过新的系统抽象最大限度地提高以内存为中心的计算的性能。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rethinking graph data placement for graph neural network training on multiple GPUs
重新思考多 GPU 上图神经网络训练的图数据放置
- DOI:10.1145/3503221.3508435
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Song, Shihui;Jiang, Peng
- 通讯作者:Jiang, Peng
Rethinking graph data placement for graph neural network training on multiple GPUs
重新思考多 GPU 上图神经网络训练的图数据放置
- DOI:10.1145/3524059.3532384
- 发表时间:2022-03-28
- 期刊:
- 影响因子:0
- 作者:Shihui Song;Peng Jiang
- 通讯作者:Peng Jiang
STMatch: Accelerating Graph Pattern Matching on GPU with Stack-Based Loop Optimizations
STMatch:通过基于堆栈的循环优化加速 GPU 上的图形模式匹配
- DOI:10.1109/sc41404.2022.00058
- 发表时间:2022-11-01
- 期刊:
- 影响因子:0
- 作者:Yi;Peng Jiang
- 通讯作者:Peng Jiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Jiang其他文献
Review of genetic engineering of Laminaria japonica (Laminariales, Phaeophyta) in China
我国海带基因工程研究进展
- DOI:
10.1023/a:1017091629539 - 发表时间:
1999-04-01 - 期刊:
- 影响因子:2.6
- 作者:
S. Qin;G. Sun;Peng Jiang;L. Zou;Yun Wu;C. Tseng - 通讯作者:
C. Tseng
HIV‐1 Tat Peptide‐Gemcitabine Gold (III)‐PEGylated Complex—Nanoflowers: A Sleek Thermosensitive Hybrid Nanocarrier as Prospective Anticancer
HIV—1 Tat 肽—吉西他滨金 (III)—聚乙二醇化复合物—纳米花:一种光滑的热敏混合纳米载体,具有潜在的抗癌作用
- DOI:
10.1002/ppsc.201800082 - 发表时间:
2018-06-07 - 期刊:
- 影响因子:2.7
- 作者:
Hui Liu;Peng Jiang;ZhongHu Li;Xiaowu Li;N. Djaker;J. Spadavecchia - 通讯作者:
J. Spadavecchia
Research on the Universality of Convolutional Networks in Resistivity Inversion
卷积网络在电阻率反演中的普适性研究
- DOI:
10.1088/1755-1315/660/1/012060 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:0
- 作者:
Benchao Liu;Qian Guo;Yonghao Pang;Peng Jiang - 通讯作者:
Peng Jiang
Alterations of Human Plasma Proteome Profile on Adaptation to High-Altitude Hypobaric Hypoxia.
人类血浆蛋白质组谱的变化对高海拔低压缺氧的适应。
- DOI:
10.1021/acs.jproteome.8b00911 - 发表时间:
2019-03-25 - 期刊:
- 影响因子:4.4
- 作者:
Xi Du;Rong Zhang;S. Ye;Fengjuan Liu;Peng Jiang;Xiaochuan Yu;Jin Xu;Li Ma;Haijun Cao;Yuanzhen Shen;F. Lin;Zongkui Wang;Changqing Li - 通讯作者:
Changqing Li
Unsupervised Deep Learning for Data-Driven Reliability and Risk Analysis of Engineered Systems
用于工程系统数据驱动可靠性和风险分析的无监督深度学习
- DOI:
10.1016/b978-0-12-811318-9.00023-5 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Peng Jiang;M. Maghrebi;A. Crosky;S. Saydam - 通讯作者:
S. Saydam
Peng Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Jiang', 18)}}的其他基金
CAREER: Compiler and Runtime Support for Sampled Sparse Computations on Heterogeneous Systems
职业:异构系统上采样稀疏计算的编译器和运行时支持
- 批准号:
2338144 - 财政年份:2024
- 资助金额:
$ 6.45万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
- 批准号:
2310423 - 财政年份:2023
- 资助金额:
$ 6.45万 - 项目类别:
Continuing Grant
CSR: Small: A Fine-Grained Hierarchical Memory Management System for Applications with Dynamic Memory Demand on GPUs
CSR:小型:针对 GPU 上具有动态内存需求的应用程序的细粒度分层内存管理系统
- 批准号:
2311610 - 财政年份:2023
- 资助金额:
$ 6.45万 - 项目类别:
Continuing Grant
Scalable Nanomanufacturing of Reconfigurable Photonic Crystals
可重构光子晶体的可扩展纳米制造
- 批准号:
1562861 - 财政年份:2016
- 资助金额:
$ 6.45万 - 项目类别:
Standard Grant
Heat-Pipe-Inspired Dynamic Windows Enabled by a Scalable Bottom-Up Technology
由可扩展的自下而上技术实现的受热管启发的动态窗户
- 批准号:
1300613 - 财政年份:2013
- 资助金额:
$ 6.45万 - 项目类别:
Standard Grant
I-Corps: Development of a Scalable Bottom-Up Nanofabrication Platform
I-Corps:开发可扩展的自下而上纳米加工平台
- 批准号:
1265139 - 财政年份:2012
- 资助金额:
$ 6.45万 - 项目类别:
Standard Grant
Scalable Self-Assembly of Colloidal Nanoparticles
胶体纳米粒子的可扩展自组装
- 批准号:
1000686 - 财政年份:2010
- 资助金额:
$ 6.45万 - 项目类别:
Continuing Grant
CAREER: Development of A Scalable Spin-Coating Technological Platform for Colloidal Self-Assembly and Templating Nanofabrication
职业:开发用于胶体自组装和模板纳米加工的可扩展旋涂技术平台
- 批准号:
0744879 - 财政年份:2008
- 资助金额:
$ 6.45万 - 项目类别:
Standard Grant
Shear-Aligned Assembly of Photonic Band Gap Coatings
光子带隙涂层的剪切对齐组装
- 批准号:
0651780 - 财政年份:2007
- 资助金额:
$ 6.45万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 6.45万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 6.45万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316157 - 财政年份:2023
- 资助金额:
$ 6.45万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 6.45万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316233 - 财政年份:2023
- 资助金额:
$ 6.45万 - 项目类别:
Continuing Grant