Silicon Metal-Insulator-Semiconductor Photovoltaics with Atomic Layer Deposited Interfacial Layers

具有原子层沉积界面层的硅金属-绝缘体-半导体光伏

基本信息

  • 批准号:
    1605129
  • 负责人:
  • 金额:
    $ 34.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

The sun represents the most abundant potential source of sustainable energy on earth. Solar cells for producing electricity require materials that absorb the sun's energy and convert its photons to electrons, a process called photovoltaics. Lowering the cost per watt for solar photovoltaic energy conversion systems is a long-standing goal that could enable more widespread adoption of solar energy. In particular, thin-film solar cells can be made cheaper than crystalline silicon-based solar cells if the right combination of material properties for high solar energy conversion efficiency can be found. The goal of this project is to investigate new layered structures for thin-film solar photovoltaics that potentially offer both low-cost processing and high solar energy conversion efficiency. These new layered structures, based on a metal-insulator-semiconductor sandwich of electronic materials, have behavior at their respective material boundaries that may favorably change the overall electronic structure and properties of the solar cell, resulting in improved performance. The innovative aspect of this research is that advanced techniques will be used to deposit these layers on top of one another with atomic level precision so that these properties can be more carefully and insightfully studied. The educational activities associated with this project include the development of a community outreach program with a local science center and the production of videos that animate the effects of physics behind the operation of photovoltaic devices.The overall goal of this research is to identify the underlying mechanisms that induce barrier height modifications and other interfacial electronic changes by insertion of dielectric tunnel layers in the context of metal-insulator-semiconductor photovoltaics (PV). Metal-insulator-semiconductor structures will be fabricated by film deposition and interface modification techniques that allow for an unprecedented level of interfacial control. This level of control will enable investigation of the fundamental behavior of fixed charges, molecular surface functionalization, atomic layer deposition (ALD) chemistry, hydrogen treatment, and ALD bilayers in MIS structures. The specific influence of these phenomena on barrier heights and interfacial electronic figures of merit relevant for improving PV devices will be quantified. Dipoles within bilayers of dissimilar metal oxides will also be used to control barrier heights. The impact of fixed charge on electronic properties will be investigated by varying fixed charge density and insulator thickness experimentally, and comparing these experimental results with theoretical simulations. Molecular surface functionalization and hydrogen at interfaces provide additional synthetic control, and their ability to minimize interfacial electronic defects will be determined. By comparing electronic measurements, low-energy ion scattering, and photoelectron spectroscopy measurements, critical relationships between layer mixing, dipole strength, and interface trap densities will be elucidated. Thus, the research will advance fundamental understanding of the underlying physical mechanisms while improving energy conversion figures of merit in a new generation of metal-insulator-semiconductor, thin-film solar PV devices.
太阳是地球上最丰富的潜在可持续能源。 用于发电的太阳能电池需要吸收太阳能量并将其光子转化为电子的材料,这一过程称为光伏发电。 降低太阳能光伏能源转换系统的每瓦成本是一个长期目标,可以使太阳能得到更广泛的采用。 特别是,如果能够找到实现高太阳能转换效率的材料特性的正确组合,薄膜太阳能电池的制造成本可以比晶体硅太阳能电池更便宜。 该项目的目标是研究薄膜太阳能光伏的新层状结构,该结构可能提供低成本加工和高太阳能转换效率。 这些新的层状结构基于电子材料的金属-绝缘体-半导体三明治,在各自的材料边界处具有行为,可能有利于改变太阳能电池的整体电子结构和性能,从而提高性能。这项研究的创新之处在于,将使用先进技术以原子级精度将这些层沉积在彼此之上,以便可以更仔细、更深入地研究这些特性。 与该项目相关的教育活动包括与当地科学中心一起制定社区外展计划以及制作视频,以动画形式展示光伏设备运行背后的物理效应。这项研究的总体目标是确定潜在机制通过在金属-绝缘体-半导体光伏(PV)背景下插入介电隧道层来诱导势垒高度改变和其他界面电子变化。金属-绝缘体-半导体结构将通过薄膜沉积和界面改性技术来制造,从而实现前所未有的界面控制水平。这种控制水平将能够研究 MIS 结构中固定电荷、分子表面功能化、原子层沉积 (ALD) 化学、氢处理和 ALD 双层的基本行为。这些现象对势垒高度和与改进光伏器件相关的界面电子品质因数的具体影响将被量化。 不同金属氧化物双层内的偶极子也将用于控制势垒高度。 通过实验改变固定电荷密度和绝缘体厚度,并将这些实验结果与理论模拟进行比较,研究固定电荷对电子特性的影响。 分子表面功能化和界面处的氢提供了额外的合成控制,并且将确定它们最小化界面电子缺陷的能力。通过比较电子测量、低能离子散射和光电子能谱测量,将阐明层混合、偶极子强度和界面陷阱密度之间的关键关系。因此,该研究将增进对潜在物理机制的基本理解,同时提高新一代金属-绝缘体-半导体薄膜太阳能光伏器件的能量转换品质因数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nick Strandwitz其他文献

Nick Strandwitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nick Strandwitz', 18)}}的其他基金

GOALI: Ultra-Low Wear Plasma Enhanced Atomic Layer Deposited Nitride Thin Films: Exploring Processing, Structure, Properties and Mechanisms
GOALI:超低磨损等离子体增强原子层沉积氮化物薄膜:探索加工、结构、性能和机制
  • 批准号:
    1826251
  • 财政年份:
    2019
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Standard Grant
CAREER: Probing Crystallization of Atomic Layers Using In Situ Electron Diffraction
职业:利用原位电子衍射探测原子层的结晶
  • 批准号:
    1752956
  • 财政年份:
    2018
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Continuing Grant
Semiconductor Photoanodes for Water Oxidation and Solar Fuels Generation Stabilized Using Atomic Layer Deposition
利用原子层沉积稳定水氧化和太阳能燃料发电的半导体光电阳极
  • 批准号:
    1042006
  • 财政年份:
    2010
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Standard Grant

相似国自然基金

非晶过渡金属多硫化物正极材料穿梭效应消除机制及其构效关系
  • 批准号:
    22309087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
原子层沉积制备分子筛限域过渡金属催化甲醇水蒸气重整制氢
  • 批准号:
    22302098
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
过渡金属单原子/亚纳米团簇复合催化剂的构筑及其锂硫电池性能研究
  • 批准号:
    52302261
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
金属有机框架对M-Nx基PEMFCs阴极催化层的多重调控机制研究
  • 批准号:
    22375017
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
过渡金属磷化物高熵化制备及其电催化析氢性能研究
  • 批准号:
    52372170
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Compact modeling of deep-submicron silicon-on-insulator (SOI) complementary metal-oxide-silicon (CMOS) devices for low-voltage very large scale integration (VLSI) applications
适用于低压超大规模集成 (VLSI) 应用的深亚微米绝缘体上硅 (SOI) 互补金属氧化物硅 (CMOS) 器件的紧凑建模
  • 批准号:
    238658-2001
  • 财政年份:
    2002
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Discovery Grants Program - Individual
Study on local surface electrical conduction by scanning microscopic four-point probes in ultrahigh vacuum
超高真空中显微四点探针扫描局部表面电导研究
  • 批准号:
    13305004
  • 财政年份:
    2001
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Compact modeling of deep-submicron silicon-on-insulator (SOI) complementary metal-oxide-silicon (CMOS) devices for low-voltage very large scale integration (VLSI) applications
适用于低压超大规模集成 (VLSI) 应用的深亚微米绝缘体上硅 (SOI) 互补金属氧化物硅 (CMOS) 器件的紧凑建模
  • 批准号:
    238658-2001
  • 财政年份:
    2001
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Discovery Grants Program - Individual
Compact modeling of deep-submicron silicon-on-insulator (SOI) complementary metal-oxide-silicon (CMOS) devices for low-voltage very large scale integration (VLSI) applications
适用于低压超大规模集成 (VLSI) 应用的深亚微米绝缘体上硅 (SOI) 互补金属氧化物硅 (CMOS) 器件的紧凑建模
  • 批准号:
    238658-2001
  • 财政年份:
    2000
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Discovery Grants Program - Individual
The Metal-Insulator Transition in Compensated Silicon
补偿硅中的金属-绝缘体转变
  • 批准号:
    8704331
  • 财政年份:
    1987
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Continuing grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了