GOALI: Ultra-Low Wear Plasma Enhanced Atomic Layer Deposited Nitride Thin Films: Exploring Processing, Structure, Properties and Mechanisms
GOALI:超低磨损等离子体增强原子层沉积氮化物薄膜:探索加工、结构、性能和机制
基本信息
- 批准号:1826251
- 负责人:
- 金额:$ 51.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Friction and wear of materials accounts for enormous losses in performance and lifetime of materials, devices and structures, at considerable cost to the US manufacturing, energy, and infrastructure sectors. Approaches to mitigate friction and wear are thus beneficial to the US economy. This Grant Opportunities for Academic Liaison with Industry (GOALI) award supports scientific research to understand mechanisms of friction and wear in metal nitride coatings. Preliminary studies revealed metal nitride coatings are among the most wear-resistant materials ever discovered, showing promise for significantly reducing the financial and environmental impacts of wear. In this research project, thin layers of metal nitride compounds are synthesized and their friction and wear properties are investigated. The aim of this work is to identify the relationships between how the films were created (processing) and their wear behavior (properties). Understanding these relationships allows for enhanced control of the mechanical behavior, and can lead to high-performance wear-resistant materials for coatings. The new materials developed are of broad importance for increasing efficiency and lifetime of mechanical systems, on both large and small scales. The work is performed in collaboration with an industrial partner, Veeco CNT. The industry team is integrally involved in the studies, which provides both educational opportunities for students involved in the research and a path to commercialization for high-performance wear-resistant coating materials. This research examines the fundamental relationships among processing, microstructure, and mechanical behavior in a class of transition metal nitrides deposited using plasma-enhanced atomic layer deposition. The high degree of synthetic tunability in this deposition technique allows for tailoring of the film composition and microstructure. Specifically, the fundamental role of composition on wear mechanism is investigated to determine the role of solid solution strengthening versus the formation of a lubricious wear-generated film in films with both vanadium and titanium cations. The impact of crystallite size on mechanical properties is determined for crystallite sizes in the 1-30 nm range using four independent synthesis parameters that control crystallite size. Adhesion and interface chemistry between the nitride films is investigated and related to macroscopic mechanical behavior, such as delamination, that is relevant to applications. Taken together, these studies reveal fundamental wear mechanisms of this highly promising material that can be related directly to the synthesis and processing parameters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
材料的摩擦和磨损会造成材料、设备和结构的性能和寿命的巨大损失,给美国制造业、能源和基础设施部门带来相当大的成本。因此,减少摩擦和磨损的方法有利于美国经济。该学术与工业联络机会 (GOALI) 奖项支持科学研究,以了解金属氮化物涂层的摩擦和磨损机制。初步研究表明,金属氮化物涂层是迄今为止发现的最耐磨的材料之一,有望显着减少磨损对经济和环境的影响。在该研究项目中,合成了薄层金属氮化物化合物,并研究了它们的摩擦和磨损性能。 这项工作的目的是确定薄膜的制作方式(加工)与其磨损行为(属性)之间的关系。 了解这些关系可以增强对机械行为的控制,并可以产生用于涂层的高性能耐磨材料。 开发的新材料对于提高大型和小型机械系统的效率和使用寿命具有广泛的重要性。 这项工作是与工业合作伙伴 Veeco CNT 合作完成的。行业团队全面参与研究,这既为参与研究的学生提供了教育机会,也为高性能耐磨涂层材料的商业化提供了途径。这项研究研究了使用等离子体增强原子层沉积沉积的一类过渡金属氮化物的加工、微观结构和机械行为之间的基本关系。这种沉积技术的高度合成可调性允许定制薄膜成分和微观结构。 具体来说,研究了成分对磨损机制的基本作用,以确定固溶强化与在具有钒和钛阳离子的薄膜中形成润滑磨损产生的薄膜的作用。使用四个控制微晶尺寸的独立合成参数确定微晶尺寸对机械性能的影响,微晶尺寸在 1-30 nm 范围内。研究了氮化物薄膜之间的粘附力和界面化学,并将其与宏观机械行为(例如与应用相关的分层)联系起来。 总而言之,这些研究揭示了这种非常有前途的材料的基本磨损机制,可以直接与合成和加工参数相关。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plasma-enhanced atomic layer deposition of titanium molybdenum nitride: Influence of RF bias and substrate structure
氮化钼钛的等离子体增强原子层沉积:射频偏压和衬底结构的影响
- DOI:10.1116/6.0001175
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Chowdhury, Md. Istiaque;Sowa, Mark;Van Meter, Kylie E.;Babuska, Tomas F.;Grejtak, Tomas;Kozen, Alexander C.;Krick, Brandon A.;Strandwitz, Nicholas C.
- 通讯作者:Strandwitz, Nicholas C.
Plasma enhanced atomic layer deposition of titanium nitride-molybdenum nitride solid solutions
氮化钛-氮化钼固溶体的等离子体增强原子层沉积
- DOI:10.1116/6.0000717
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Chowdhury, Md. Istiaque;Sowa, Mark;Kozen, Alexander C.;Krick, Brandon A.;Haik, Jewel;Babuska, Tomas F.;Strandwitz, Nicholas C.
- 通讯作者:Strandwitz, Nicholas C.
Plasma-enhanced atomic layer deposition of vanadium nitride
氮化钒的等离子体增强原子层沉积
- DOI:10.1116/1.5109671
- 发表时间:2019
- 期刊:
- 影响因子:2.9
- 作者:Kozen, Alexander C.;Sowa, Mark J.;Ju, Ling;Strandwitz, Nicholas C.;Zeng, Guosong;Babuska, Tomas F.;Hsain, Zakaria;Krick, Brandon A.
- 通讯作者:Krick, Brandon A.
Quality Control Metrics to Assess MoS2 Sputtered Films for Tribological Applications
- DOI:10.1007/s11249-022-01642-y
- 发表时间:2022-12-01
- 期刊:
- 影响因子:3.2
- 作者:Babuska, Tomas F.;Curry, John F.;Krick, Brandon A.
- 通讯作者:Krick, Brandon A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nick Strandwitz其他文献
Nick Strandwitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nick Strandwitz', 18)}}的其他基金
CAREER: Probing Crystallization of Atomic Layers Using In Situ Electron Diffraction
职业:利用原位电子衍射探测原子层的结晶
- 批准号:
1752956 - 财政年份:2018
- 资助金额:
$ 51.25万 - 项目类别:
Continuing Grant
Silicon Metal-Insulator-Semiconductor Photovoltaics with Atomic Layer Deposited Interfacial Layers
具有原子层沉积界面层的硅金属-绝缘体-半导体光伏
- 批准号:
1605129 - 财政年份:2016
- 资助金额:
$ 51.25万 - 项目类别:
Standard Grant
Semiconductor Photoanodes for Water Oxidation and Solar Fuels Generation Stabilized Using Atomic Layer Deposition
利用原子层沉积稳定水氧化和太阳能燃料发电的半导体光电阳极
- 批准号:
1042006 - 财政年份:2010
- 资助金额:
$ 51.25万 - 项目类别:
Standard Grant
相似国自然基金
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
- 批准号:61001097
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
GOALI: Fluctuation Electron Microscopy Studies of Ultra-Low Expansion Glasses and Ceramics
GOALI:超低膨胀玻璃和陶瓷的涨落电子显微镜研究
- 批准号:
1906367 - 财政年份:2019
- 资助金额:
$ 51.25万 - 项目类别:
Continuing Grant
GOALI: Enabling Ultra-Low Viscosity Lubricants Through Fundamental Understanding of Additive Interactions and Tribofilm Growth Mechanisms: An In-Situ Study
GOALI:通过对添加剂相互作用和摩擦膜生长机制的基本了解,实现超低粘度润滑剂:原位研究
- 批准号:
1728360 - 财政年份:2017
- 资助金额:
$ 51.25万 - 项目类别:
Standard Grant
SHF: Small: GOALI: Addressing the Challenges of Parameter Variation in the Design of Ultra-Low Power Chip Multiprocessors Using Near-Threshold Technology
SHF:小型:GOALI:利用近阈值技术解决超低功耗芯片多处理器设计中参数变化的挑战
- 批准号:
1117799 - 财政年份:2011
- 资助金额:
$ 51.25万 - 项目类别:
Standard Grant
GOALI: Nanowire Broken-Gap Tunneling Field-Effect Transistors for High-Performance, Ultra-Low-Power Logic Applications
GOALI:用于高性能、超低功耗逻辑应用的纳米线断隙隧道场效应晶体管
- 批准号:
1102278 - 财政年份:2011
- 资助金额:
$ 51.25万 - 项目类别:
Standard Grant
GOALI: Understanding Self-Assembly of Noble Metal Alloys for Ultra Low Temperature Oxidation Catalysis
GOALI:了解用于超低温氧化催化的贵金属合金的自组装
- 批准号:
1067803 - 财政年份:2011
- 资助金额:
$ 51.25万 - 项目类别:
Standard Grant