TWC: Medium: Privacy Preserving Computation in Big Data Clouds
TWC:中:大数据云中的隐私保护计算
基本信息
- 批准号:1564097
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Privacy is critical to freedom of creativity and innovation. Assured privacy protection offers unprecedented opportunities for industry innovation, science and engineering discovery, as well as new life enhancing experiences and opportunities. The ability to perform efficient and yet privacy preserving big data computations in the Cloud holds great potential for safe and effective data analytics, such as enabling health-care applications to provide personalized medical treatments using an individual's DNA sequence, or enabling advertisers to create targeted advertisements by mining a user's clickstream and social activities, without violation of data privacy. The PrivacyGuard project is developing algorithms, systems and tools that provide end-to-end privacy guarantees over the life cycle of a data analytic job. The end-to-end privacy guarantee can be measured by how difficult one can learn about some of the original sensitive data from the sanitized data releases, the intermediate results of execution and the output of an analytic job. The ultimate goal of PrivacyGuard is to develop a methodical framework and a suite of techniques for ensuring distributed computations to meet the desired privacy requirements of input data, as well as protecting against disclosure of sensitive patterns during execution and in the final output of the computation.The PrivacyGuard project advances the knowledge and understanding of privacy preserving distributed computation from three perspectives: (1) It designs formal mechanisms to formulate a data owner's end-to-end privacy requirement for each data release, for example, by associating each data release with a well-defined usage scope to confine the set of data analytics models and algorithms that can operate on the released data. (2) It develops a suite of execution privacy guards with dual objectives: to audit and enforce privacy compliances during distributed computation against data-flow based privacy violations and to guard the compliance of input privacy. (3) It devises a proactive approach to output privacy against information leakages associated with mining output, for example, by leveraging differential privacy model to maximize the upper bound for data privacy guarantee and minimize the lower bound for data utility losses. The PrivacyGuard project is the first effort towards a practical and systematic implementation framework for ensuring the end-to-end privacy in distributed big data computations. Furthermore, by integrating the PrivacyGuard research with the curriculum development on big data systems and analytics courses at Georgia Institute of Technology, it contributes to the education and training of new generation of data scientists to be the privacy compliance advocates.
隐私对创造力和创新自由至关重要。保证的隐私保护为行业创新,科学和工程发现提供了前所未有的机会,以及新的增强生活的体验和机会。在云中执行高效但因此保留大数据计算的能力具有很大的潜力,可以进行安全有效的数据分析,例如使医疗保健应用程序使用个人的DNA序列提供个性化的医疗治疗,或者使广告客户能够通过挖掘用户的点击活动和社交活动,而无需侵犯数据隐私。 PrivacyGuard项目正在开发在数据分析工作的生命周期中提供端到端隐私保证的算法,系统和工具。 端到端隐私保证可以通过从消毒数据发布,执行的中间结果和分析作业的中间结果中了解一些原始敏感数据的困难来衡量。隐私组织的最终目标是制定有条不紊的框架和一套技术,以确保分布式计算满足输入数据的所需隐私要求,并保护在执行过程中和计算的最终输出期间披露敏感模式的披露,并在计算的最终输出中。每个数据发布的端到端隐私要求,例如,通过将每个数据发布与定义明确的使用范围关联,以限制可以在已发布数据上操作的数据分析模型和算法集。 (2)它开发了具有双重目标的一套执行隐私警卫:在分布式计算期间针对基于数据流的隐私侵犯的分布式计算时进行审核和执行隐私权,并保留输入隐私的合规性。 (3)它为与采矿输出相关的信息泄漏设计了一种主动的输出隐私方法,例如,通过利用差异隐私模型来最大化数据隐私保证的上限,并最大程度地减少数据实用程序损失的下限。 PrivacyGuard项目是为确保分布式大数据计算中端到端隐私的实用和系统实施框架的首次努力。此外,通过将佐治亚理工学院大数据系统和分析课程的课程开发与课程开发相结合,它有助于对新一代数据科学家的教育和培训成为隐私合规性的提倡者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ling Liu其他文献
Seawater‐irrigation effects on growth, ion concentration, and photosynthesis of transgenic poplar overexpressing the Na+/H+ antiporter AtNHX1
海水灌溉对过表达 Na+/H+ 反向转运蛋白 AtNHX1 的转基因杨的生长、离子浓度和光合作用的影响
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Chao;Q. Zheng;Zhao;Ling Liu;Gengmao Zhao;X. Long;Hongyan Li - 通讯作者:
Hongyan Li
Cancer Therapy: Preclinical LY2875358, a Neutralizing and Internalizing Anti-MET Bivalent Antibody, Inhibits HGF-Dependent and HGF-Independent MET Activation and Tumor Growth
癌症治疗:临床前 LY2875358 是一种中和性和内化性抗 MET 二价抗体,可抑制 HGF 依赖性和 HGF 独立性 MET 激活和肿瘤生长
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Ling Liu;Weixia Zeng;Mark A. Wortinger;S. Yan;P. Cornwell;V. Peek;R. Jennifer;Stephens;J. Tetreault;Jinqi Xia;J. Manro;K. Credille;D. Ballard;P. Brown;V. Wacheck;C. Chow;Lihua Huang;Yong Wang;Irene Denning;J. Davies;Ying Tang;P. Vaillancourt;J. Lu - 通讯作者:
J. Lu
An extended association rule mining strategy for gene relationship discovery from microarray data
用于从微阵列数据发现基因关系的扩展关联规则挖掘策略
- DOI:
10.1080/00949655.2012.710616 - 发表时间:
2014 - 期刊:
- 影响因子:1.2
- 作者:
B. Peng;Dianwen Zhu;Xiaowei Yang;Ling Liu;Wen;X. Zhou;Dongyun Yi - 通讯作者:
Dongyun Yi
Regulation of Caspase-3 and -9 Activation in Oxidant Stress to Renal Tubular Epithelial Cells by Forkhead Transcription Factors, Bcl-2 Proteins and Mitogen- Activated Protein Kinases
叉头转录因子、Bcl-2 蛋白和丝裂原激活蛋白激酶对肾小管上皮细胞氧化应激中 Caspase-3 和 -9 激活的调节
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
G. Kaushal;Ling Liu;V. Kaushal;X. Hong;O. Melnyk;R. Seth;R. Safirstein;Sudhir V. Shah - 通讯作者:
Sudhir V. Shah
Positive end expiratory pressure titrated by transpulmonary pressure improved oxygenation and respiratory mechanics in acute respiratory distress syndrome patients with intra‐abdominal hypertension
通过跨肺压滴定呼气末正压可改善伴有腹内高压的急性呼吸窘迫综合征患者的氧合和呼吸力学
- DOI:
10.3760/cma.j.issn.0366-6999.20131096 - 发表时间:
2013 - 期刊:
- 影响因子:6.1
- 作者:
Yi Yang;Yang Li;Songqiao Liu;Ling Liu;Yingzi Huang;F. Guo;H. Qiu - 通讯作者:
H. Qiu
Ling Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ling Liu', 18)}}的其他基金
NSF-CSIRO: RAI4IoE: Responsible AI for Enabling the Internet of Energy
NSF-CSIRO:RAI4IoE:负责任的人工智能实现能源互联网
- 批准号:
2302720 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Privacy Enhancing Techniques and Innovations for AI-Cybersecurity Cross Training
EAGER:SaTC-EDU:人工智能-网络安全交叉培训的隐私增强技术和创新
- 批准号:
2038029 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials
职业:氢键材料中的纳米级热传输
- 批准号:
1946189 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials
职业:氢键材料中的纳米级热传输
- 批准号:
1751610 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
NetSE: Medium: Privacy-Preserving Information Network and Services for Healthcare Applications
NetSE:媒介:用于医疗保健应用程序的隐私保护信息网络和服务
- 批准号:
0905493 - 财政年份:2009
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
SGER: Distributed Spatial Partitioning Algorithms for Scalable Processing of Mobile Location Queries
SGER:用于可扩展处理移动位置查询的分布式空间分区算法
- 批准号:
0640291 - 财政年份:2006
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CT-ISG: Protecting Location Privacy in Location-Aware Computing: Architectures and Algorithms
CT-ISG:在位置感知计算中保护位置隐私:架构和算法
- 批准号:
0627474 - 财政年份:2006
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
A Peer to Peer Approach to Large Scale Information Monitoring
大规模信息监控的点对点方法
- 批准号:
0306488 - 财政年份:2003
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
System Support for Distributed Information Change Monitoring
分布式信息变更监控的系统支持
- 批准号:
9988452 - 财政年份:2000
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
- 批准号:
1855391 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
- 批准号:
1564101 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
- 批准号:
1564034 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Broker Leads for Privacy-Preserving Discovery in Health Information Exchange
TWC:媒介:协作:经纪人主导健康信息交换中的隐私保护发现
- 批准号:
1611770 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Security and Privacy for Wearable and Continuous Sensing Platforms
TWC:媒介:协作:可穿戴和连续传感平台的安全和隐私
- 批准号:
1513584 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant