EAGER: Collaborative Research: Liquid-Based Intelligent High-Frequency Components

EAGER:合作研究:液基智能高频元件

基本信息

项目摘要

High-frequency electronic components play an important role in our daily lives. They cover the broad frequency range from radio frequency (RF) to microwave to terahertz (THz). Typical applications include wireless fidelity (Wi-Fi) systems, microwave ovens, bluetooth systems, wireless power transfer, satellite communication, anti-collision car radar, airport security check systems, THz imaging, and many others. With the advent of these systems, high-frequency electronic components are now required to support electronic systems operating in many different frequency bands and with different characteristics. To address this issue, it is important to design and realize high-frequency electronic components with reconfigurable and highly flexible responses (e.g. THz components with tunable frequency band and large modulation depth). Up to now, almost all of such high-frequency components are made of solid materials. Their physical structures are rigid, fixed and difficult to reconfigure. This research will study novel liquid-based high-frequency electronic components. The employment of liquids to replace conventional solid materials will facilitate the generation of reconfigurable and intelligent electronic systems with high adaptability. The intelligence is enabled by electronically manipulating liquid movements and morphing its shape. The proposed research will pave the way for the development of liquid-based electronic systems. In addition to advancing knowledge in both science and engineering, the proposed project will have potential broad impacts to our society, including improvements to communication, safety, health care, and defense systems. This project will also produce exciting learning and training opportunities for students.The explosive development of communication systems in the past decade has imposed stringent design challenges for high-frequency components. For example, the emerging THz technology has called for the innovative design of THz components with advanced functionalities. The proposed project aims to realize efficient use and control of liquid materials to adaptively change the responses of high-frequency devices, from which system level intelligence can be achieved to actively control these devices for optimal performance. Electrowetting on dielectric (EWOD) will be employed as the tuning mechanism to realize agile actuation and programmable transport of liquids. The resulting novel liquid-based high-frequency devices can operate efficiently at the broad spectrum from RF/microwave to THz. By leveraging multi-disciplinary knowledge in electromagnetics and electrowetting techniques, this project has the following three innovations: (1) design of novel liquid-based THz components with transformative characteristics and properties; (2) use of the EWOD technique to realize adaptive tuning of the high-frequency devices with reconfigurable and programmable responses; (3) tuning of high-frequency components through three-dimensional manipulation of liquids. The proposed research represents a systematic and interdisciplinary effort to realize liquid-based high-frequency components with a fully electronically-controlled tuning and flexible properties, covering a broad range of applications such as communications, security, and sensing. The proposed design will be verified by experimental results and module demonstration.
高频电子元件在我们的日常生活中发挥着重要作用。它们涵盖了从射频 (RF) 到微波再到太赫兹 (THz) 的广泛频率范围。典型应用包括无线保真 (Wi-Fi) 系统、微波炉、蓝牙系统、无线电力传输、卫星通信、防撞汽车雷达、机场安全检查系统、太赫兹成像等。随着这些系统的出现,现在需要高频电子元件来支持在许多不同频段和具有不同特性下运行的电子系统。为了解决这个问题,设计和实现具有可重构和高度灵活响应的高频电子元件(例如具有可调频带和大调制深度的太赫兹元件)非常重要。到目前为止,几乎所有此类高频元件都是由固体材料制成的。 它们的物理结构是僵化的、固定的并且难以重新配置。这项研究将研究新型液体高频电子元件。采用液体替代传统固体材料将有助于产生具有高适应性的可重构和智能电子系统。这种智能是通过电子操纵液体运动并改变其形状来实现的。拟议的研究将为液基电子系统的发展铺平道路。 除了推进科学和工程知识之外,拟议的项目还将对我们的社会产生潜在的广泛影响,包括改善通信、安全、医疗保健和国防系统。该项目还将为学生提供令人兴奋的学习和培训机会。过去十年通信系统的爆炸性发展给高频元件带来了严峻的设计挑战。例如,新兴的太赫兹技术需要具有先进功能的太赫兹元件的创新设计。该项目旨在实现液体材料的高效使用和控制,以自适应地改变高频设备的响应,从而实现系统级智能,主动控制这些设备以获得最佳性能。电介质电润湿(EWOD)将被用作调谐机制,以实现液体的敏捷驱动和可编程传输。由此产生的新型液体高频设备可以在从射频/微波到太赫兹的广谱范围内高效运行。通过利用电磁学和电润湿技术的多学科知识,该项目具有以下三项创新:(1)设计具有变革性特征和性能的新型液基太赫兹元件; (2)利用EWOD技术实现响应可重构、可编程的高频器件的自适应调谐; (3)通过液体的三维操纵来调谐高频分量。拟议的研究代表了一项系统性和跨学科的努力,旨在实现具有完全电子控制调谐和灵活特性的基于液体的高频元件,涵盖通信、安全和传感等广泛的应用。所提出的设计将通过实验结果和模块演示进行验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiangtao Cheng其他文献

Active Chip Cooling Using Electrowetting with Site-specific Treatments
使用电润湿和特定部位处理的主动芯片冷却
Topology intelligence computation of 3D seepage of landslide in the Three Gorges reservoir area
三峡库区滑坡三维渗流拓扑智能计算
Microfluidic Tunable Liquid Prisms for Solar Beam Steering and Concentration
用于太阳光束转向和聚光的微流体可调谐液体棱镜
  • DOI:
    10.1115/es2013-18039
  • 发表时间:
    2013-07-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sung Yong Park;Jiangtao Cheng;Chung
  • 通讯作者:
    Chung
Comparison of Early and Late Travel Times of Pressure Pulses Induced by Multilevel Slug Tests
多级段塞试验引起的压力脉冲早期和晚期传播时间的比较
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiangtao Cheng;R. Brauchler;M. Everett
  • 通讯作者:
    M. Everett
Water-resistant hemp fiber-reinforced composites: In-situ surface protection by polyethylene film
防水大麻纤维增强复合材料:聚乙烯薄膜原位表面保护
  • DOI:
    10.1016/j.indcrop.2017.12.014
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Yingji Wu;Changlei Xia;L. Cai;S. Shi;Jiangtao Cheng
  • 通讯作者:
    Jiangtao Cheng

Jiangtao Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiangtao Cheng', 18)}}的其他基金

EAGER: Unravelling the Spatiotemporal Dynamics of Three-Phase Contact Line on Soft Surfaces by Transmission X-Ray Microscopy
EAGER:通过透射 X 射线显微镜揭示软表面三相接触线的时空动力学
  • 批准号:
    2133017
  • 财政年份:
    2021
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Electrowetting-Tuned Liquid Droplets on Lubricated Superhydrophobic Surfaces for Whispering-Gallery-Mode Sensing
用于耳语画廊模式传感的润滑超疏水表面上的电润湿调谐液滴
  • 批准号:
    1808931
  • 财政年份:
    2018
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
UNS: Experimental and Theoretical Investigation of Thin Film Evaporation in Superhydrophobic-Superhydrophilic Hybrid Micro\Nanotextures
UNS:超疏水-超亲水混合微纳米纹理中薄膜蒸发的实验和理论研究
  • 批准号:
    1512163
  • 财政年份:
    2015
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
UNS: Experimental and Theoretical Investigation of Thin Film Evaporation in Superhydrophobic-Superhydrophilic Hybrid Micro\Nanotextures
UNS:超疏水-超亲水混合微纳米纹理中薄膜蒸发的实验和理论研究
  • 批准号:
    1550299
  • 财政年份:
    2015
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了