Bilateral BBSRC-NSF/BIO: Bayesian Quantitative Proteomics
双边 BBSRC-NSF/BIO:贝叶斯定量蛋白质组学
基本信息
- 批准号:1550088
- 负责人:
- 金额:$ 64.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The functional molecules in cells are proteins - the expression, activity and interactions of particular proteins in any given cell define its structure and what it is capable of doing. The technologies used to study proteins on a large scale are collectively called proteomics. The main method used in proteomics is mass spectrometry (MS), which can calculate the molecular weight and abundance of molecules. The majority of proteomics workflows perform a step of protein digestion prior to MS. The result of digestion is that all the proteins become broken up into small chains, called peptides. This step has become common, because peptides are easier to analyse by MS, due to their lower mass, producing simpler data to interpret. One challenge in this digestion step is that some proteins break down quickly whereas for others digestion is incomplete, producing unreliable quantification data that are not fully understood or compensated for by current analysis software. To overcome this problem, the University of Texas Anderson Cancer Center will collaborate with the University of Manchester in the United Kingdom to develop an integrated suite of analysis techniques using a powerful statistical technique called Bayesian modelling. These advances will be incorporated into a freely available software suite. Tandem Mass Spectrometry (MS/MS) coupled to Liquid Chromatography (LC) is the primary technique used in proteomics. The most common approach is LC separation of tryptic fragments derived from a proteome digestion, followed by tandem MS of the peptides. This entire workflow is conceived as a series of discrete steps, some chemical, some instrumental, some informatics and some statistical. Existing software concentrates on subcomponents of the workflow, and comprise a series of deterministic, self-contained steps. This project will translate the whole protein quantification pipeline into a rigorous statistical framework underpinned by Bayesian methodology. The new framework will integrate evidence across all experimentally acquired datasets, and borrow strength from unused structure within a proteomics workflow, including digestion dynamics. The proposed pipeline consists of three synergistic developments (1) Utilization of all unidentified (peptide) features, as well as identified features, to infer the most likely mixture of proteins present in a sample; (2) Differential quantification of complex mixtures of known proteoforms; (3) Discovery of unknown proteoforms and all modifications (PTMs) carried by their quantification signatures. These advancements will elicit a step-change in quantification sensitivity and interpretation at the proteoform level for the first time. The end-to-end analysis solution will be made available within the user-centric standards compliant ProteoSuite package, and as a Galaxy workflow for high-throughput pipelines.
细胞中的功能分子是蛋白质——任何给定细胞中特定蛋白质的表达、活性和相互作用决定了其结构及其功能。用于大规模研究蛋白质的技术统称为蛋白质组学。蛋白质组学中使用的主要方法是质谱(MS),它可以计算分子的分子量和丰度。大多数蛋白质组学工作流程在 MS 之前执行蛋白质消化步骤。消化的结果是所有蛋白质都分解成小链,称为肽。这一步骤已经变得很常见,因为肽质量较低,更容易通过 MS 进行分析,产生更容易解释的数据。此消化步骤中的一个挑战是某些蛋白质快速分解,而另一些蛋白质则消化不完全,产生不可靠的定量数据,当前的分析软件无法完全理解或补偿这些数据。为了克服这个问题,德克萨斯大学安德森癌症中心将与英国曼彻斯特大学合作,使用称为贝叶斯建模的强大统计技术开发一套集成的分析技术。这些进步将被纳入免费提供的软件套件中。 串联质谱 (MS/MS) 与液相色谱 (LC) 联用是蛋白质组学中使用的主要技术。最常见的方法是对蛋白质组消化产生的胰蛋白酶片段进行 LC 分离,然后对肽进行串联 MS。整个工作流程被认为是一系列离散的步骤,一些是化学步骤,一些是仪器步骤,一些是信息学步骤,一些是统计步骤。现有软件集中于工作流程的子组件,并包含一系列确定性的、独立的步骤。该项目将把整个蛋白质定量流程转化为以贝叶斯方法为基础的严格统计框架。新框架将整合所有实验获取的数据集的证据,并从蛋白质组学工作流程中未使用的结构中借用力量,包括消化动力学。拟议的管道包括三个协同发展(1)利用所有未识别(肽)特征以及已识别特征来推断样品中最可能存在的蛋白质混合物; (2) 已知蛋白质形式的复杂混合物的差异定量; (3) 发现未知的蛋白质组及其量化特征所携带的所有修饰 (PTM)。这些进步将首次在蛋白质组水平上引起定量灵敏度和解释的阶跃变化。端到端分析解决方案将在以用户为中心、符合标准的 ProteoSuite 软件包中提供,并作为高通量管道的 Galaxy 工作流程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Morris其他文献
A uniformly ergodic Gibbs sampler for Bayesian survival analysis
用于贝叶斯生存分析的均匀遍历吉布斯采样器
- DOI:
- 发表时间:
2024-02-23 - 期刊:
- 影响因子:0
- 作者:
Benny Ren;Jeffrey Morris;Ian Barnett - 通讯作者:
Ian Barnett
An observational analysis of discontinuation and non-publication of osteoarthritis trials.
骨关节炎试验中止和未发表的观察分析。
- DOI:
10.1016/j.joca.2018.05.019 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:0
- 作者:
Jared T. Scott;Craig M. Cooper;Jake X. Checketts;Jerrin Cutler;Marshall Boose;Jeffrey Morris;M. Vassar - 通讯作者:
M. Vassar
Racial/Ethnic Differences in Long-COVID-Associated Symptoms among Pediatrics Population: Findings from Difference-in-differences Analyses in RECOVER Program
儿科人群中与新冠病毒相关的长期症状的种族/民族差异:RECOVER 计划中的双重差异分析结果
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yong Chen;Dazheng Zhang;Bingyu Zhang;Qiong Wu;Ting Zhou;Jiayi Tong;Yiwen Lu;Jiajie Chen;Huiyuan Wang;D. Chisolm;Ravi Jhaveri;Rachel Kenney;Russel Rothman;Suchitra Rao;David A Williams;Mady Hornig;Jeffrey Morris;Christopher B Forrest - 通讯作者:
Christopher B Forrest
Association of Social Distancing, Population Density, and Temperature With the Instantaneous Reproduction Number of SARS-CoV-2 in Counties Across the United States
美国各县的社交距离、人口密度和温度与 SARS-CoV-2 瞬时繁殖数量的关系
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:13.8
- 作者:
D. Rubin;Jing Huang;B. T. Fisher;A. Gasparrini;V. Tam;Lihai Song;Xi Wang;Jason Kaufman;Kate Fitzpatrick;Arushi Jain;H. Griffis;K. Crammer;Jeffrey Morris;G. Tasian - 通讯作者:
G. Tasian
Modelling approaches for capturing plankton diversity (MODIV), their societal applications and data needs
捕捉浮游生物多样性(MODIV)的建模方法、其社会应用和数据需求
- DOI:
10.3389/fmars.2022.975414 - 发表时间:
2022-08-16 - 期刊:
- 影响因子:5.8
- 作者:
E. Acevedo‐Trejos;Mathilde Cadier;Subhendu Chakraborty;Bingzhang Chen;Yan Cheung;Maria Grigoratou;C. Guill;C. Hassenrück;O. Kerimoglu;Toni Klauschies;C. Lindemann;A. Palacz;A. Ryabov;M. Scotti;S. Smith;Selina Våge;Friederike Prowe;Rachel Ann Foster;Jeffrey Morris - 通讯作者:
Jeffrey Morris
Jeffrey Morris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Morris', 18)}}的其他基金
Collaborative Research: Statistical mechanics of dense suspensions - dynamical correlations and scaling theory
合作研究:稠密悬浮液的统计力学 - 动力学相关性和标度理论
- 批准号:
2228680 - 财政年份:2023
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
Collaborative Research: Statistical mechanics of dense suspensions - dynamical correlations and scaling theory
合作研究:稠密悬浮液的统计力学 - 动力学相关性和标度理论
- 批准号:
2228680 - 财政年份:2023
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
Collaborative Research: Discontinuous Shear Thickening and Shear Jamming in Dense Suspensions: Statistical Mechanics and the Microscopic Basis for Extreme Transitions of Properties
合作研究:稠密悬浮液中的不连续剪切增稠和剪切堵塞:统计力学和性能极端转变的微观基础
- 批准号:
1916879 - 财政年份:2019
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO: Bayesian Quantitative Proteomics
双边 BBSRC-NSF/BIO:贝叶斯定量蛋白质组学
- 批准号:
2016487 - 财政年份:2019
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO: Bayesian Quantitative Proteomics
双边 BBSRC-NSF/BIO:贝叶斯定量蛋白质组学
- 批准号:
2016487 - 财政年份:2019
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
Collaborative Research: Discontinuous Shear Thickening and Shear Jamming in Dense Suspensions: Statistical Mechanics and the Microscopic Basis for Extreme Transitions of Properties
合作研究:稠密悬浮液中的不连续剪切增稠和剪切堵塞:统计力学和性能极端转变的微观基础
- 批准号:
1605283 - 财政年份:2016
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
Bridge funds for CCNY-Chicago MRSEC PREM
CCNY-芝加哥 MRSEC PREM 的过桥资金
- 批准号:
1449568 - 财政年份:2015
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
Suspension Dynamics with Inertia: Combined Discrete-Particle Simulation and Constitutive Modeling Investigations
惯性悬架动力学:离散粒子模拟与本构建模研究相结合
- 批准号:
0853720 - 财政年份:2009
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
PREM: City College-Chicago MRSEC Partnership on the Dynamics of Heterogeneous and Particulate Materials
PREM:城市学院-芝加哥 MRSEC 关于异质和颗粒材料动力学的合作伙伴关系
- 批准号:
0934206 - 财政年份:2009
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
Academic-Industrial Workshop on Complex and Evolving Multiphase Flows
复杂和演变的多相流学术-工业研讨会
- 批准号:
0847271 - 财政年份:2008
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
相似海外基金
Bilateral BBSRC-NSF/BIO: CIBR: Structural modeling of interactome to assess phenotypic effects of genetic variation.
双边 BBSRC-NSF/BIO:CIBR:相互作用组的结构模型,用于评估遗传变异的表型效应。
- 批准号:
1917263 - 财政年份:2019
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO: Bayesian Quantitative Proteomics
双边 BBSRC-NSF/BIO:贝叶斯定量蛋白质组学
- 批准号:
2016487 - 财政年份:2019
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO: Bayesian Quantitative Proteomics
双边 BBSRC-NSF/BIO:贝叶斯定量蛋白质组学
- 批准号:
2016487 - 财政年份:2019
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO Collaborative Research: ABI Development: A Critical Assessment of Protein Function Annotation
BBSRC-NSF/BIO 双边合作研究:ABI 开发:蛋白质功能注释的批判性评估
- 批准号:
1854685 - 财政年份:2018
- 资助金额:
$ 64.9万 - 项目类别:
Standard Grant
Bilateral NSF/BIO-BBSRC:A Metagenomics Exchange - enriching analysis by synergistic harmonisation of MG-RAST and the EBI Metagenomics Portal
双边 NSF/BIO-BBSRC:宏基因组学交流 - 通过 MG-RAST 和 EBI 宏基因组学门户的协同协调丰富分析
- 批准号:
BB/N018354/1 - 财政年份:2017
- 资助金额:
$ 64.9万 - 项目类别:
Research Grant